首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The vertebrate posterior body is formed by a combination of the gastrulation movements that shape the head and anterior trunk and posterior specific cell behaviors. Here, we investigated whether genes that regulate cell movements during gastrulation [no tail (ntl)/brachyury, knypek (kny) and pipetail (ppt)/wnt5] interact to regulate posterior body morphogenesis. Both kny;ntl and ppt;ntl double mutant embryos exhibit synergistic trunk and tail shortening by early segmentation. Gene expression analysis in the compound mutants indicates that anteroposterior germ-layer patterning is largely normal and that the tail elongation defects are not due to failure to specify or maintain posterior tissues. Moreover, ntl interacts with ppt and kny to synergistically regulate the posterior expression of the gene encoding bone morphogenetic protein 4 (bmp4) but not of other known T-box genes, fibroblast growth factor genes or caudal genes. Examination of mitotic and apoptotic cells indicates that impaired tail elongation is not simply due to decreased cell proliferation or increased cell death. Cell tracing in ppt;ntl and kny;ntl mutants demonstrates that the ventral derived posterior tailbud progenitors move into the tailbud. However, gastrulation-like convergence and extension movements and cell movements within the posterior tailbud are impaired. Furthermore, subduction movements of cells into the mesendoderm are reduced in kny;ntl and ppt;ntl mutants. We propose that Ntl and the non-canonical Wnt pathway components Ppt and Kny function in parallel, partially redundant pathways to regulate posterior body development. Our work initiates the genetic dissection of posterior body morphogenesis and links genes to specific tail-forming movements. Moreover, we provide genetic evidence for the notion that tail development entails a continuation of mechanisms regulating gastrulation together with mechanisms unique to the posterior body.  相似文献   

4.
Several genes containing the conserved T-box region in invertebrates and vertebrates have been reported recently. Here, we describe three novel members of the T-box gene family in zebrafish. One of these genes, tbx-c, is studied in detail. It is expressed in the axial mesoderm, notably, in the notochordal precursor cells immediately before formation of the notochord and in the chordoneural hinge of the tail bud, after the notochord is formed. In addition, its expression is detected in the ventral forebrain, sensory neurons, fin buds and excretory system. The expression pattern of tbx-c differs from that of the other two related genes, tbx-a and tbx-b. The developmental role of tbx-c has been analysed by overexpression of the full-length tbx-c mRNA and a truncated form of tbx-c mRNA, which encodes the dominant-negative Tbx-c. Overexpression of tbx-c causes expansion of the midline mesoderm and formation of ectopic midline structures at the expense of lateral mesodermal cells. In dominant-negative experiments, the midline mesoderm is reduced with the expansion of lateral mesoderm to the midline. These results suggest that tbx-c plays a role in formation of the midline mesoderm, particularly, the notochord. Moreover, modulation of tbx-c activity alters the development of primary motor neurons. Results of in vitro analysis in zebrafish animal caps suggest that tbx-c acts downstream of early mesodermal inducers (activin and ntl) and reveal an autoregulatory feedback loop between ntl and tbx-c. These data and analysis of midline (ntl-/- and flh-/-) and lateral mesoderm (spt-/-) mutants suggest that tbx-c may function during formation of the notochord.  相似文献   

5.
Although largely involved in innate and adaptive immunity, NF-kappa B plays an important role in vertebrate development. In chicks, the inactivation of the NF-kappa B pathway induces functional alterations of the apical ectodermal ridge, which mediates limb outgrowth. In mice, the complete absence of NF-kappa B activity leads to prenatal death and neural tube defects. Here, we report the cloning and characterization of NF-kappa B/I kappa B proteins in zebra fish. Despite being ubiquitously expressed among the embryonic tissues, NF-kappa B/I kappa B members present distinct patterns of gene expression during the early zebra fish development. Biochemical assays indicate that zebra fish NF-kappa B proteins are able to bind consensus DNA-binding (kappa B) sites and inhibitory I kappa B alpha proteins from mammals. We show that zebra fish I kappa B alphas are degraded in a time-dependent manner after induction of transduced murine embryo fibroblasts (MEFs) and that these proteins are able to rescue NF-kappa B activity in I kappa B alpha(-/-) MEFs. Expression of a dominant-negative form of the murine I kappa B alpha (mI kappa B alpha M), which is able to block NF-kappa B in zebra fish cells, interferes with the notochord differentiation, generating no tail (ntl)-like embryos. This phenotype can be rescued by coinjection of the T-box gene ntl (Brachyury homologue), which is typically required for the formation of posterior mesoderm and axial development, suggesting that ntl lies downstream of NF-kappa B . We further show that ntl and Brachyury promoter regions contain functional kappa B sites and NF-kappa B can directly modulate ntl expression. Our study illustrates the conservation and compatibility of NF-kappa B/I kappa B proteins among vertebrates and the importance of NF-kappa B pathway in mesoderm formation during early embryogenesis.  相似文献   

6.
7.
8.
Hensen's node, also called the chordoneural hinge in the tail bud, is a group of cells that constitutes the organizer of the avian embryo and that expresses the gene HNF-3(&bgr;). During gastrulation and neurulation, it undergoes a rostral-to-caudal movement as the embryo elongates. Labeling of Hensen's node by the quail-chick chimera system has shown that, while moving caudally, Hensen's node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endodermal cells. In this work, we demonstrate that the node can be divided into functionally distinct subregions. Caudalward migration of the node depends on the presence of the most posterior region, which is closely apposed to the anterior portion of the primitive streak as defined by expression of the T-box gene Ch-Tbx6L. We call this region the axial-paraxial hinge because it corresponds to the junction of the presumptive midline axial structures (notochord and floor plate) and the paraxial mesoderm. We propose that the axial-paraxial hinge is the equivalent of the neuroenteric canal of other vertebrates such as Xenopus. Blocking the caudal movement of Hensen's node at the 5- to 6-somite stage by removing the axial-paraxial hinge deprives the embryo of midline structures caudal to the brachial level, but does not prevent formation of the neural tube and mesoderm located posteriorly. However, the whole embryonic region generated posterior to the level of Hensen's node arrest undergoes widespread apoptosis within the next 24 hours. Hensen's node-derived structures (notochord and floor plate) thus appear to produce maintenance factor(s) that ensures the survival and further development of adjacent tissues.  相似文献   

9.
The zebrafish no tail gene (ntl) is indispensable for the formation of the notochord and the tail structure. Here we showed that de novo DNA methylation occurred at the CpG island of ntl. The methylation started at the segmentation stage and continued after the larval stage. However, it occurred predominantly between 14 and 48 h postfertilization, which overlaps the period in which ntl expression disappears in the notochord and the tailbud. This inverse correlation, together with the methylation-associated formation of an inaccessible chromatin structure at the ntl CpG island region, suggested the involvement of the de novo methylation in ntl repression. Since no changes in methylation patterns were observed at the CpG islands of four other zebrafish genes, there must be a mechanism in zebrafish for specific methylation of the ntl CpG island.  相似文献   

10.
11.
In vertebrates, wnt8 has been implicated in the early patterning of the mesoderm. To determine directly the embryonic requirements for wnt8, we generated a chromosomal deficiency in zebrafish that removes the bicistronic wnt8 locus. We report that homozygous mutants exhibit pronounced defects in dorso-ventral mesoderm patterning and in the antero-posterior neural pattern. Despite differences in their signaling activities, either coding region of the bicistronic RNA can rescue the deficiency phenotype. Specific interference of wnt8 translation by morpholino antisense oligomers phenocopies the deficiency, and interference with wnt8 translation in ntl and spt mutants produces embryos lacking trunk and tail. These data demonstrate that the zebrafish wnt8 locus is required during gastrulation to pattern both the mesoderm and the neural ectoderm properly.  相似文献   

12.
Korzh VP 《Ontogenez》2001,32(3):196-203
During gastrulation in vertebrate embryos, three definitive germ layers (ectoderm, mesoderm, and endoderm) are formed by organized and coordinated cell movements. In zebrafish, further subdivision of the mesoderm gives rise to the axial, adaxial and paraxial mesoderm. The axial mesoderm contributes to the prechordal plate and notochord whereas the adaxial and paraxial cells give rise to slow and fast muscles, respectively (Devoto et al., 1996; Blagden et al., 1997; Currie and Ingham, 1998). An inductive interaction in which the notochord plays an essential role will also provide an input in forming other specialized types of tissue contributing to the axial structures: the floor plate located dorsally to the notochord in the ventral spinal cord and the hypochord located ventrally of the notochord and deriving probably from the endoerm. It is known that despite the difference in developmental roles (Str?hle et al., 1993; Krauss et al., 1993), the floor plate and hypochord co-express a number of common molecular markers (Jan et al., 1995; our unpublished results) that may illustrate a certain similarity of their origin. Their close proximity to the notochord determines specialized features of these structures that differ substantially from the rest of the neural tube and endoderm, correspondingly. Once formed under the influence of the notochordal signaling, the floor plate will acquire an ability, similar to the notochord, to express genes of the Hedgehog family and several other groups of genes and to induce specification of ventral cell types in the neural tube during later development (for review, see Korzh, 1998). The biology of the hypochord is much less understood. It seems that the hypochord develops slightly later than the floor plate. It may be required for proper positioning of the dorsal aorta as well as induction of some other endoderm derivatives.  相似文献   

13.
The dorsal ectoderm of vertebrate gastrula is first specified into anterior fate by an activation signal and posteriorized by a graded transforming signal, leading to the formation of forebrain, midbrain, hindbrain and spinal cord along the anteroposterior (A-P) axis. Transplanted non-axial mesoderm rather than axial mesoderm has an ability to transform prospective anterior neural tissue into more posterior fates in zebrafish. Wnt8 is a secreted factor that is expressed in non-axial mesoderm. To investigate whether Wnt8 is the neural posteriorizing factor that acts upon neuroectoderm, we first assigned Frizzled 8c and Frizzled 9 to be functional receptors for Wnt8. We then, transplanted non-axial mesoderm into the embryos in which Wnt8 signaling is cell-autonomously blocked by the dominant-negative form of Wnt8 receptors. Non-axial mesodermal transplants in embryos in which Wnt8 signaling is cell-autonomously blocked induced the posterior neural markers as efficiently as in wild-type embryos, suggesting that Wnt8 signaling is not required in neuroectoderm for posteriorization by non-axial mesoderm. Furthermore, Wnt8 signaling, detected by nuclear localization of beta-catenin, was not activated in the posterior neuroectoderm but confined in marginal non-axial mesoderm. Finally, ubiquitous over-expression of Wnt8 does not expand neural ectoderm of posterior character in the absence of mesoderm or Nodal-dependent co-factors. We thus conclude that other factors from non-axial mesoderm may be required for patterning neuroectoderm along the A-P axis.  相似文献   

14.
15.
A fundamental problem in developmental biology is how left-right (LR) asymmetry is generated, both on the whole organism level and at the level of an individual organ or structure. To investigate the relationship of organ sidedness to organ chirality, we examined 12 zebrafish mutants for initial heart tube position and later heart looping direction (chirality). Anomalous initial heart position was found in seven mutants, which also demonstrated loss of normal LR asymmetry in lateral plate mesoderm (LPM) antivin/lefty-1 and Pitx2 expression. Those with a relatively normal notochord (cyc(b16), din, and spt) displayed a predictive correlation between initial heart position and heart chirality, whereas initial heart position and heart chirality were independently randomized in those with a defective notochord (flh, boz, ntl, and mom). The predictability of heart chirality in spt, din, and b16 embryos, even in the absence of normal antivin/lefty-1 and Pitx2 expression, strongly suggests that heart chirality is controlled by a process distinct from that which controls appropriate left-sided LPM expression of antivin-Pitx2 signaling pathway molecules. In addition, there was correlation of initial heart position with gut chirality (and also between heart chirality and gut chirality) in the first class of mutants with normal notochord, but not in the second class, which appears to model human heterotaxy syndrome.  相似文献   

16.
17.
18.
19.
20.
We have analyzed the role of the zebrafish yolk cell in the processes of mesoderm induction and establishment of the organizer. By recombining blastomere-free yolk cells and animal cap tissue we have shown that the yolk cell itself can induce mesoderm in neighboring blastomeres. We further demonstrate the competence of all blastomeres to form mesoderm, suggesting the endogenous mesoderm inducing signal to be locally restricted. Ablation of the vegetal third of the yolk cell during the first 20 min of development does not interfere with mesoderm formation in general, but results in completely ventralized embryos. These embryos lack the notochord, neuroectoderm, and the anterior-most 14-15 somites, demonstrating that the ablation affects the formation of the trunk-, but not the tail region of the embryo. This suggests the presence of a trunk organizer in fish. The dorsalized mutant swirl (zbmp-2b) shows expanded dorsal structures and missing ventral structures. In contrast to the phenotypes obtained upon the ablation treatment in wild-type embryos, removal of the vegetal-most yolk in swirl mutants results in embryos which do form neuroectoderm and anterior trunk somites. However, both wild-type and swirl mutants lack a notochord upon vegetal yolk removal. These ablation experiments in wild-type and swirl mutant embryos demonstrate that in zebrafish dorsal determining factors originate from the vegetal part of the yolk cell. These factors set up two independent activities: one induces the notochord and the other is involved in the formation of the neuroectoderm and the trunk region by counteracting the function of swirl. In addition, these experiments show that the establishment of the anteroposterior axis is independent of the dorsoventral axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号