首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The O-specific polysaccharide (OPS) isolated from the lipopolysaccharide of Proteus mirabilis O36 was found to have a pentasaccharide repeating unit of the following structure: -->2)-beta-D-Ribf-(1-->4)-beta-D-Galp-(1-->4)-alpha-D-GlcpNAc6Ac-(1-->4)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->. The structure is unique among Proteus OPS, which is in agreement with the classification of this strain into a separate Proteus O-serogroup. Remarkably, the P. mirabilis O36-polysaccharide has the same structure as the OPS of Escherichia coli O153, except that the latter is devoid of O-acetyl groups. The cross-reaction of anti-O36 antibodies with the O-part of E. coli O153 lipopolysaccharide is observed. In the present study, two steps of serotyping Proteus strains are proposed: screening of dry mass with enzyme-linked immunosorbent assay and immunoblot with the crude lipopolysaccharides. This method allowed serotyping of 99 P. mirabilis strains infecting the human urinary tract. Three strains were classified into serogroup O36. The migration pattern of these lipopolysaccharides fraction with long O-specific PSs was similar to the standard laboratory P. mirabilis O36 (Prk 62/57) lipopolysaccharide. The relatively low number of clinical strains belonging to serogroup O36 did not correspond to the presence of anti-P. mirabilis O36 antibodies in the blood donors' sera. Twenty-five percent of tested sera contained a statistically significant elevated level of antibodies reacting with thermostable surface antigens of P. mirabilis O36. The presence and amount of antibodies correlated with Thr399Ile TLR4 polymorphism types (P=0.044).  相似文献   

2.
The structure of the O-polysaccharide of the lipopolysaccharide of Proteus mirabilis 2002 was elucidated by chemical methods and 1H and 13C NMR spectroscopy. It was found that the polysaccharide consists of branched pentasaccharide repeating units having the following structure: [structure in text]. The O-polysaccharide of P. mirabilis 2002 has a common tetrasaccharide fragment with that of P. mirabilis 52/57 from serogroup O29, and the lipopolysaccharides of the two strains are serologically related. Therefore, based on the structural and serological data, we propose to classify P. mirabilis 2002 into the Proteus O29 serogroup as a subgroup O29a,29b.  相似文献   

3.
The structures of the O-polysaccharides of the lipopolysaccharides of Proteus mirabilis O7 and O49 were determined by chemical methods, mass spectrometry, including MS/MS, and NMR spectroscopy, including experiments run in an H2O/D2O mixture to reveal correlations for NH protons. The O-polysaccharides were found to contain N-carboxyacetyl (malonyl) and N-(3-carboxypropanoyl) (succinyl) derivatives of 4-amino-4,6-dideoxyglucose (4-amino-4-deoxyquinovose, Qui4N), respectively. The behavior of Qui4N derivatives with the dicarboxylic acids under conditions of acid hydrolysis and methanolysis was studied using GLC-MS.  相似文献   

4.
O-Polysaccharides were obtained from the lipopolysaccharides of Proteus mirabilis CCUG 10704 (OE) and Proteus vulgaris TG 103 and studied by chemical analyses and one- and two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy, including rotating-frame nuclear Overhauser effect spectroscopy, H-detected (1)H,(13)C heteronuclear single-quantum spectroscopy and (1)H,(31)P heteronuclear multiple-quantum spectroscopy experiments. The Proteus mirabilis OE polysaccharide was found to have a trisaccharide repeating unit with a lateral glycerol phosphate group. The Proteus vulgaris TG 103 produces a similar O-polysaccharide, which differs in incomplete substitution with glycerol phosphate (c. 50% of the stoichiometric amount) and the presence of an O-acetyl group at position 6 of the 2-acetamido-2-deoxygalactose (GalNAc) residue. These structures are unique among the known bacterial polysaccharide structures. Based on the structural and serological data of the lipopolysaccharides, it is proposed to classify both strains studied into a new Proteus serogroup, O54, as two subgroups, O54a,54b and O54a,54c. The serological relatedness of the Proteus O54 and some other Proteus lipopolysaccharides is discussed.  相似文献   

5.
The O-specific polysaccharide chains (O-antigens) of the lipopolysaccharides (LPSs) of Proteus mirabilis O48 and Proteus vulgaris O21 were found to have tetrasaccharide and pentasaccharide repeating units, respectively, interlinked by a glycosidic phosphate. Polysaccharides and an oligosaccharide were derived from the LPSs by various degradation procedures and studied by 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,13C and 1H,31P HMQC experiments. The following related structures of the repeating units of the O-antigens were established (top: Proteus mirabilis O48; bottom: Proteus vulgaris O21) The O-specific polysaccharide of P. vulgaris O21 has the same structure as that of Hafnia allvei 744 and PCM 1194 [Petersson C., Jachymek, W., Klonowska, A., Lugowski, C., Niedziela, T. & Kenne, L. (1997) Eur. J. Biochem., 245, 668-675], except that the GlcN residue carries the N-acetyl rather than the N-[(R)-3-hydroxybutyryl] group. Serological investigations confirmed the close relatedness of the Proteus and Hafnia O-antigens studied.  相似文献   

6.
Two Proteus mirabilis strains, 3 B-m and 3 B-k, were isolated from urine and faeces of a hospitalized patient from Lodz, Poland. It was suggested that one strain originated from the other, and the presence of the bacilli in the patient's urinary tract was most probably a consequence of autoinfection. The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of P. mirabilis 3 B-m and studied by sugar analysis and nuclear magnetic resonance spectroscopy, including two-dimensional rotating frame Overhause effect spectroscopy (ROESY) and 1H,13C heteronuclear single quantum coherence (HSQC) experiments. The following structure of the linear trisaccharide-repeating unit of the O-polysaccharide was established:-->2)-beta-D-Glcp-(1-->3)-alpha-L-6dTalp2Ac-(1-->3)-beta-D-GlcpNAc-(1-->where 6dTal2Ac stands for 2-O-acetyl-6-deoxy-L-talose. It resembles the structure of the O-polysaccharide of Proteus penneri O66, which includes additional lateral residues of 2,3-diacetamido-2,3,6-trideoxy-L-mannose. The lipopolysaccharides from two P. mirabilis strains studied were serologically identical to each other but not to that from any of the existing 76 Proteus O-serogroups. Therefore, the strains were classified into a new O77 serogroup specially created in the genus Proteus. Serological studies using Western blot and enzyme-linked immunosorbent assay with intact and adsorbed O-antisera showed that the P. mirabilis O77 antigen is related to Proteus vulgaris O2 and P. penneri O68 antigens, and a putative disaccharide epitope responsible for the cross-reactivity was revealed.  相似文献   

7.
The effects of O33 and O49 P. mirabilis lipopolysaccharides (LPSs) on human erythrocyte membrane properties were examined. Physical parameters of the plasma membrane, such as membrane lipid fluidity, physical state of membrane proteins, and osmotic fragility, were determined. The fluidity of the lipids was estimated using three spin-labeled stearic acids of doxyl derivatives: 5-doxylstearic acid, 12-doxylstearic acid, and 16-doxylstearic acid. All the applied labels locate to different depths of the lipid layer and provide information on the ordering of phospholipid fatty acyl chain mobility. LPSs O49 increased the membrane lipid fluidity in the polar region of the lipid bilayer as indicated by spin-labeled 5-doxylstearic acid. An increase in fluidity was also observed in the deeper region using 12-doxylstearic acid only for O33 LPSs. The highest concentration of O33 LPSs (1 mg/ml) increased the motion of membrane proteins detected by the spin-label residue of iodoacetamide. These results showed different actions of O33 and O49 LPSs on the plasma membrane due to the different chemical structures of O-polysaccharides. P. mirabilis O33 and O49 LPSs did not induce changes in the membrane cytoskeleton, osmotic fragility and lipid peroxidation of erythrocytes. On the other hand a rise in the content of carbonyl compounds was observed for the highest concentrations of O33 LPS. This result indicated protein oxidation in the erythrocyte membrane. Lipid A, the hydrophobic part of LPS, did not change the membrane lipid fluidity and osmotic fragility of erythrocytes. Smooth and rough forms of P. mirabilis LPSs were tested for their abilities for complement-mediated immunohemolysis of erythrocytes. Only one out of seven LPSs used was a potent agent of complement-mediated hemolysis. It was rough, Ra-type of P. mirabilis R110 LPS. The O-polysaccharide-dependent scheme of reaction is presented.  相似文献   

8.
Lipopolysaccharides of eight wild-type strains of the phototrophic bacterium Rhodospirillum tenue have been analyzed. All of the lipopolysaccharides are highly lipophilic. The compositions of preparations obtained by the phenol-water or by the phenol-chloroform-petroleum ether procedure are very similar. The polysaccharide moiety, obtained by mild acid hydrolysis of lipopolysaccharide, consists mainly of aldoheptoses: L-glycero-D-mannoheptose is present in all strains, whereas D-glycero-D-mannoheptose is an additional constituent in some strains. Galactosaminuronic acid and two unknown ninhydrin-positive components were detected in the lipopolysaccharides of six strains. Spermidine and putrescine are present in large amounts in a salt-like linkage in the lipopolysaccharides from three strains. 2-Keto-3-deoxyoctonate forms the linkage between the polysaccharide moiety and lipid A. The lipid A fraction contains all the glucosamine and all the D-arabinose present in the lipopolysaccharide. D-Arabinose is an invariable constituent of the lipid A from the Rhodopseudomonas tenue lipopolysaccharides investigated. The principal fatty acids are beta-hydroxycapric, myristic, and palmitic acids. The isolated R. tenue lipopolysaccharides (O-antigens) react with rabbit antisera prepared against homologous cells. The titers in passive hemagglutination are low, similar to those found with enterobacterial R-lipopolysaccharides. R. tenue O-antigens containing only L-glycero-D-mannoheptose and those containing both the L- and D-epimers of glycero-D-mannoheptose could not be differentiated by serological means.  相似文献   

9.
The structure of lipid A core region of the lipopolysaccharides (LPS) from Proteus mirabilis serotypes O6, O57 and O48 was determined using NMR, MS and chemical analysis of the oligosaccharides, obtained by mild acid hydrolysis, alkaline deacylation, and deamination of LPS: [see text for structure]. Incomplete substitutions are indicated by bold italic type. All sugars are present in pyranose form, alpha-Hep is the residue of L-glycero-alpha-D-manno-Hep, alpha-DD-Hep is the residue of D-glycero-alpha-D-manno-Hep, L-Ara4N is 4-amino-4-deoxy-L-arabinose, Qui4NAlaAla is the residue of 4-N-(L-alanyl-L-alanyl)-4-amino-4,6-dideoxyglucose. All sugars except L-Ara4N have D-configuration. beta-GalA* is partially present in the form of amide with 1,4-diaminobutane (putrescine)-HN(CH2)4NH2 or spermidine-HN(CH2)3NH(CH2)4NH2.  相似文献   

10.
Components of outer membrane preparations, heated saline extracts, and phenolwater lipopolysaccharide extracts obtained from strains ofCampylobacter jejuni representing seven passive hemagglutination serotypes (Penner serotypes 1–4, 13, 16, and 50) were electrophoresed in sodium dodecyl sulfate-polyacrylamide gels. Tests of gel eluates demonstrated that lipopolysaccharide antigens are involved in serotypingC. jejuni by passive hemagglutination and that other cell surface components have no activity. This finding was confirmed by hemagglutination inhibition. In the typing ofC. jejuni by passive hemagglutination, each serotype is probably defined by the presence of one or more specific lipopolysaccharides. These findings may lead to a clarification of the serotyping nomenclature for those systems that depend on passive hemagglutination. It is recommended that a single internationally agreed numbering system be adopted for lipopolysaccharides derived fromC. jejuni.  相似文献   

11.
The following structure of the O-polysaccharide (O-antigen) of the lipopolysaccharide of Proteus mirabilis O-9 was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with chemical methods: [chemical structure: see text] where the degree of O-acetylation is approximately 70%. Immunochemical studies using rabbit polyclonal anti-Proteus mirabilis O-9 serum showed the importance of the O-acetyl groups in manifesting the serological specificity of the O-9 antigen. Anti-P. mirabilis O-9 cross-reacted with the lipopolysaccharides (LPS) of P. vulgaris O-25 and Proteus penneri 14, which could be accounted for by a structural similarity of their O-polysaccharides.  相似文献   

12.
The core region of the lipopolysaccharides of Proteus group OX bacteria, which are used as antigens in Weil-Felix test for serodiagnosis of rickettsiosis, were studied by chemical degradations in combination with ESI FTMS, including infrared multi-photon dissociation (IRMPD) MS/MS and capillary skimmer dissociation. Structural variants of the inner core region were found to be the same as in Proteus non-OX strains that have been studied earlier. The outer core region has essentially the same structure in Proteus vulgaris OX19 (serogroup O1) and OX2 (serogroup O2) and a different structure in Proteus mirabilis OXK (serogroup O3). A fragmentation due to the rupture of the linkage between GlcN or GalN and GalA was observed in IRMPD-MS/MS of core oligosaccharides and found to be useful for screening of Proteus strains to assign structures of the relatively conserved inner core region and to select for further studies strains with distinct structures of a more variable outer core region.  相似文献   

13.
The lipopolysaccharides of Rhodopseudomonas capsulata strains St. Louis (ATCC 23782) and Sp 11 both contain L-acofriose, rhamnose, glucose and glucosamine as the main sugar constituents. 2-Keto-3-deoxyoctonate and neuraminic acid were tentatively identified. The fatty acid spectrum found with both strains comprises 3-OH-C10 and C12:1 (ester-linked) and 3-oxo-C14 (amide-linked). Isolated lipid A from strain Sp 11 contains glucosamine, glucosamine-phosphate and the total of the fatty acids of the lipopolysaccharide. Methylation analysis of the degraded polysaccharide of this lipopolysaccharide shows L-acofriose in both terminal and 1 leads to 2 chain-linked positions in a 1:4 molar ratio. Rhamnose is exclusively chain-linked (1 leads to 2), glucose is both terminally and chain-linked (1 leads to 6) in a 1:1 molar ratio. The serological activity of the lipopolysaccharide of both the R. capsulata strains is low in antisera against living or heat-killed cells when tested by passive hemagglutination, Ouchterlony immunoprecipitation or gel-immunoelectrophoresis. No crossreaction was observed among the lipopolysaccharides of R. capsulata strains St. Louis, Sp 11 and 37b4 in immunoprecipitation. Lipopolysaccharide of strain Sp 11 was found to lack lethal toxicity in galactosamine-sensitized mice.  相似文献   

14.
O-Specific side chain of P. aeruginosa immunotype 3 lipopolysaccharide is composed of N-acetyl-D-fucosamine (FucNAc), 2,3-diacetamido-2,3-dideoxy-L-guluronic acid (GulN2Ac2A) and 3-acetamidino = 2-acetamido = 2,3 = dideoxy = D-mannuronic acid (ManNAcAmA). The latter sugar is identified on the basis of solvolysis with anhydrous hydrogen fluoride, 13C NMR spectroscopy and fast-atom bombardment mass spectrometry analysis, as well as of reactions of acetamidino function (alkaline hydrolysis to acetamido group and reductive deamination to ethylamino group). Earlier, in the course of investigation of P. aeruginosa O3 lipopolysaccharides, the structure of 1-methyl-2-imidazoline was erroneously ascribed to the acetamidino group. The following structure was established for the repeating unit of immunotype 3 polysaccharide which is identical to P. aeruginosa O3(a),3c polysaccharide: ----4)-beta-D-ManNAcAmA-(1----4)-alpha-L-GulN2Ac2A-(1----3)- beta-D-FucNac-(1----.  相似文献   

15.
O-Specific polysaccharide was obtained by mild acid degradation of Proteus mirabilis O3 lipopolysaccharide. The polysaccharide was dephosphorylated with 48% HF to give a linear polysaccharide and an amino acid, N-(2-hydroxyethyl)-D-alanine. The structure of the polysaccharide was determined by methylation, Smith degradation and computer-assisted analysis of the 13C-NMR spectra of original and dephosphorylated polymers and oligomers. The structure of the amino acid was investigated by using 1H and 13C-NMR spectroscopy and mass spectrometry (applied to the acetylated methyl ester derivative). Its absolute configuration was established by comparison of the optical rotation value and CD spectrum of the natural and synthetic product. On the basis of the data obtained, it was concluded that the repeating unit of P. mirabilis O3 O-specific polysaccharide has the following structure: (formula; see text) Removal of the amino acid phosphate substituent significantly decreased serological activity of the O-specific polysaccharide, thus showing the immunodominant role of this group. Serological cross-reactions between P. mirabilis O3 and O27 were demonstrated and tentatively substantiated.  相似文献   

16.
Plesiomonasshigelloides strain CNCTC 110/92 (O51) was identified as a new example of plesiomonads synthesising lipopolysaccharides (LPSs) that show preference for a non-aqueous surrounding during phenol/water extraction. Chemical analyses combined with 1H and 13C NMR spectroscopy, MALDI-TOF and ESI mass spectrometry showed that the repeating units of the O-specific polysaccharides isolated from phenol and water phase LPSs of P. shigelloides O51 have the same structure: →4)-β-d-GlcpNAc3NRA-(1→4)-α-l-FucpAm3OAc-(1→3)-α-d-QuipNAc-(1→, containing the rare sugar constituent 2,3-diamino-2,3-dideoxyglucuronic acid (GlcpNAc3NRA), and substituents such as d-3-hydroxybutyric acid (R) and acetamidino group (Am). The HR-MAS NMR spectra obtained for the isolated LPSs and directly on bacteria indicated that the O-acetylation pattern was consistent throughout the entire preparation. The 1H chemical shift values of the structure reporter groups identified in the isolated O-antigens matched those present in bacteria. We have found that the O-antigens recovered from the phenol phase showed a higher degree of polymerisation than those isolated from the water phase.  相似文献   

17.
The lipopolysaccharides of Hafnia alvei strains 23, 1222 and 39 were found to have non-typical core region. On the basis of sugar and methylation analyses, 1H-nuclear magnetic resonance spectra and matrix-assisted laser-desorption ionization-time of flight mass spectrometry, it was concluded that the core oligosaccharide of strains 23 and 1222 has the same structure as Escherichia coli R4 core region, and the core oligosaccharide of strain 39 has the structure of Salmonella Ra core. Using the serological methods (passive hemagglutination, enzyme-linked immunosorbent assay and immunoblotting) and the anti-conjugate sera directed against E. coli R4 and Salmonella Ra core oligosaccharides we have confirmed the structural results presented above.  相似文献   

18.
The O-chain polysaccharide of the lipopolysaccharide (LPS) of a previously nonclassified strain of Proteus mirabilis termed G1 was studied by sugar analysis and 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, rotating-frame NOE (ROESY), H-detected 1H,13C HMQC, and heteronuclear multiple-bond correlation (HMBC) experiments. The following structure of the polysaccharide was established: [carbohydrate structure: see text] where D-GalA6(L-Lys) stands for N(alpha)-(D-galacturonoyl)-L-lysine. The structure of the O-polysaccharide of P. mirabilis G1 is similar, but not identical, to that of P. mirabilis S1959 and OXK belonging to serogroup O3. Immunochemical studies with P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera revealed close LPS-based serological relatedness of P. mirabilis G1 and S1959, and therefore it was suggested to classify P. mirabilis G1 in serogroup O3 as a subgroup. P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera also cross-reacted with LPS of P. mirabilis strains from two other serogroups containing D-GalA6(L-Lys) in the O-polysaccharide or in the core region.  相似文献   

19.
The core lipopolysaccharides (LPS) of Proteus mirabilis as well as those of Klebsiella pneumoniae and Serratia marcescens are characterized by the presence of a hexosamine-galacturonic acid disaccharide (αHexN-(1,4)-αGalA) attached by an α1,3 linkage to L-glycero-D-manno-heptopyranose II (L-glycero-α-D-manno-heptosepyranose II). In K. pneumoniae, S. marcescens, and some P. mirabilis strains, HexN is D-glucosamine, whereas in other P. mirabilis strains, it corresponds to D-galactosamine. Previously, we have shown that two enzymes are required for the incorporation of D-glucosamine into the core LPS of K. pneumoniae; the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS, and WabN catalyzes the deacetylation of the incorporated GlcNAc. Here we report the presence of two different HexNAc transferases depending on the nature of the HexN in P. mirabilis core LPS. In vivo and in vitro assays using LPS truncated at the level of galacturonic acid as acceptor show that these two enzymes differ in their specificity for the transfer of GlcNAc or GalNAc. By contrast, only one WabN homologue was found in the studied P. mirabilis strains. Similar assays suggest that the P. mirabilis WabN homologue is able to deacetylate both GlcNAc and GalNAc. We conclude that incorporation of d-galactosamine requires three enzymes: Gne epimerase for the generation of UDP-GalNAc from UDP-GlcNAc, N-acetylgalactosaminyltransferase (WabP), and LPS:HexNAc deacetylase.  相似文献   

20.
Lipopolysaccharides of Salmonella T mutants   总被引:3,自引:1,他引:2       下载免费PDF全文
The composition of lipopolysaccharides derived from various Salmonella T forms was studied. All T1-form lipopolysaccharides examined contained 14 to 22% each of both d-galactose and pentose in addition to 4 to 9% each of ketodeoxyoctonic acid, heptose, d-glucosamine, and d-glucose. The pentose was identified as d-ribose. The T2-form lipopolysaccharide examined did not contain a significant amount of pentose, nor more than the usual amounts of d-galactose. Periodate oxidation of T1 (lipo) polysaccharides followed by NaBH(4) reduction revealed that ribose was almost quantitatively protected, galactose was destroyed, and threitol and mannose were newly formed. The latter two products probably originated from 4-linked galactose and heptose, respectively. Ribose and galactose were found in specific precipitates of T1 lipopolysaccharide with anti-T1 antiserum but were not found in specific precipitates of alkali-treated T1 lipopolysaccharide and of Freeman degraded polysaccharide with anti-T1 serum Ribose and galactose are present in these degraded preparations in the form of nondialyzable polymers. The T1-form mutant lipopolysaccharides lacked the O-specific sugars constituting the side-chains in the wild-type antigens. They did not produce the soluble O-specific haptenic polysaccharide known to be accumulated in RI strains. With these properties, T1 lipopolysaccharides resemble RII lipopolysaccharides. Like RII degraded polysaccharides, T1-degraded polysaccharides also contained glucosamine. Furthermore, strong cross-reactions were found to exist between T1 and RII lipopolysaccharides in both hemagglutination inhibition assays and in precipitation tests. It is proposed that T1 lipopolysaccharides represent RII lipopolysaccharides to which polymers consisting of ribose and galactose are attached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号