首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Microsomal preparations undergoing lipid peroxidation produce CO and lose haem from cytochrome P-450. 2. The amount of CO produced does not correlate with the amount of haem lost and, after pre-labelling of microsomal haem in its bridges with 5-amino[5-14C]laevulinate, the radioactivity lost from haem is not recorved as CO. 3. Similarly, when pre-labelled microsomal haem is destroyed by the action of 2-allyl-2-isopropylacetamide, no radioactivity is recovered as CO. In clear contrast, on degradation of haem by the haem oxygenase system, CO is produced in an amount equimolar to the haem lost. 4. It is concluded that (a) the CO produced during lipid peroxidation originates from a source different from haem and (b) the degradations of haem caused by lipid peroxidation and 2-allyl-2-isopropylacetamide do not involve to any significant extent evolution of the methene-bridge carbon of haem as CO.  相似文献   

2.
1. The effect of a single dose of 2-allyl-2-isopropylacetamide on the cytochrome P-450 concentration in rat liver microsomal fraction was studied. The drug caused a rapid loss of cytochrome P-450 followed by a gradual increase to above the normal concentration. 2. The loss of cytochrome P-450 was accompanied by a loss of microsomal haem and by a brown-green discoloration of the microsomal fraction suggesting that a change in the chemical constitution of the lost haem had taken place. Direct evidence for this was obtained by prelabelling the liver haems with radioactive 5-aminolaevulate: the drug caused a loss of radioactivity from the haem with an increase of radioactivity in a fraction containing certain un-identified green pigments. 3. Evidence was obtained by a dual-isotopic procedure that rapidly turning-over haem(s) may be preferentially affected. 4. The loss of cytochrome P-450 as well as the loss of microsomal haem and the discoloration of the microsomal fraction were more intense in animals pretreated with phenobarbitone and were much less evident when compound SKF 525-A (2-diethylaminoethyl 3,3-diphenylpropylacetate) was given before 2-allyl-2-isopropylacetamide, suggesting that the activity of the drug-metabolizing enzymes may be involved in these effects. 5. The relevance of the destruction of liver haem to the increased activity of 5-aminolaevulate synthetase caused by 2-allyl-2-isopropylacetamide is discussed.  相似文献   

3.
The effects of cobaltic protoporphyrin IX (CPP) administration on hepatic microsomal drug metabolism, carbon tetrachloride activation and lipid peroxidation have been investigated using male Wistar rats. CPP (125 mumol/kg, 72 h before sacrifice) profoundly decreased the levels of hepatic microsomal heme, particularly cytochrome P-450. Consequently, the associated mixed-function oxidase systems were equally strongly depressed. An unexpected finding was that CPP administration also greatly decreased the activity of NADPH/cytochrome c reductase, a result not generally found with the administration of the more widely used cytochrome P-450 depleting agents, cobaltous chloride. Activation of carbon tetrachloride, measured as covalent binding of [14C] CCl4, spin-trapping of CCl3 and CCl4-stimulated lipid peroxidation, was much lower in liver microsomes from CPP-treated rats. Other microsomal lipid peroxidation systems, utilising cumene hydroperoxide or NADPH/ADP-Fe2+, were also depressed in parallel with the decrease in microsomal enzyme activities.  相似文献   

4.
Rat liver microsomal membranes contain a reduced-glutathione-dependent protein(s) that inhibits lipid peroxidation in the ascorbate/iron microsomal lipid peroxidation system. It appears to exert its protective effect by scavenging free radicals. The present work was carried out to assess the effect of this reduced-glutathione-dependent mechanism on carbon tetrachloride-induced microsomal injury and on carbon tetrachloride metabolism because they are known to involve free radicals. Rat liver microsomes were incubated at 37 degrees C with NADPH, EDTA and carbon tetrachloride. The addition of 1 mM-reduced glutathione (GSH) markedly inhibited lipid peroxidation and glucose 6-phosphatase inactivation and, to a lesser extent, inhibited cytochrome P-450 destruction. GSH also inhibited covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. These results indicate that a GSH-dependent mechanism functions to protect the microsomal membrane against free-radical injury in the carbon tetrachloride system as well as in the iron-based systems. Under anaerobic conditions, GSH had no effect on chloroform formation, carbon tetrachloride-induced destruction of cytochrome P-450 or covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. Thus, the GSH protective mechanism appears to be O2-dependent. This suggests that it may be specific for O2-based free radicals. This O2-dependent GSH protective mechanism may partly underlie the observed protection of hyperbaric O2 against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity.  相似文献   

5.
Accelerated hepatic haem catabolism in the selenium-deficient rat.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Hepatic microsomal cytochrome P-450 concentrations are lower in selenium-deficient rats treated with phenobarbital for 4 days than in similarly treated control rats. 2. No defect in haem synthesis was found on the basis of measurements of delta-aminolaevulinate synthase (EC 2.3.1.37), delta-aminolaevulinate dehydratase (EC 4.2.1.24) and ferrochelatase (EC 4.99.1.1) activities, and urinary excretion of delta-aminolaevulinate, porphobilinogen, uroporphyrin and coproporphyrin. 3. No defect in apo-(cytochrome P-450) separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. An increase in haem catabolism was found. An 8-fold increase in hepatic microsomal haem oxygenase (EC 1.14.99.3) activity occurred in selenium-deficient rats after phenobarbital treatment, compared with a less than 2-fold increase in control rats. Also excretion of 14CO in the breath after administration of delta-amino[5-14C]laevulinate was greater by phenobarbital-treated selenium-deficient rats than by similarly treated controls. 5. These studies demonstrate that the defective induction of cytochrome P-450 by phenobarbital in selenium-deficient rats is accompanied by increased haem catabolism. This could be due to increased breakdown of cytochrome P-450 or to catabolism of haem before it attaches to the apo-cytochrome. The role of selenium in stabilizing cytochrome P-450 and/or in protecting haem from breakdown remains to be determined.  相似文献   

6.
The induction of cytochrome P-450 in cultured chick embryo hepatocytes was studied using two structurally unrelated compounds, 2-allyl-2-isopropylacetamide and phenobarbital. Pulse-labeling of these cells showed enhanced de novo synthesis of cytochrome P-450. The cytochrome induced by 2-allyl-2-isopropylacetamide, as well as the one induced by phenobarbital, reacted immunologically with antibodies raised against the major hepatic phenobarbital-induced isozyme. Additional form of cytochrome P-450 is induced exclusively by phenobarbital. These results clearly demonstrate that these two drugs induce at least one form of cytochrome P-450 in common.  相似文献   

7.
The porphyrinogenic drug 2-allyl-2-isopropylacetamide causes the degradation of microsomal cytochrome P-450 and inhibits the synthesis of catalase in rat liver. The inhibition of catalase synthesis follows the induction of delta-aminolaevulinate synthetase and the consequent overproduction of haem. The allylisopropylacetamide-mediated breakdown of cytochrome P-450 is a rapid event and has a reciprocal relationship to the pattern of delta-aminolaevulinate synthetase induction. Breakdown of cytochrome P-450 appears to be one of the conditions leading to the ;derepression' of delta-aminolaevulinate synthetase.  相似文献   

8.
Cobalt ions (Co2+) are potent inducers of haem oxygenase in liver and inhibit microsomal drug oxidation probably by depleting microsomal haem and cytochrome P-450. Complexing of Co2+ ions with cysteine or glutathione (GSH) blocked ability of the former to induce haem oxygenase. When hepatic GSH content was depleted by treatment of animals with diethyl maleate, the inducing effect of Co2+ on haem oxygenase was significantly augmented. Other metal ions such as Cr2+, Mn2+, Fe2+, Fe3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ were also capable of inducing haem oxygenase and depleting microsomal haem and cytochrome P-450. None of these metal ions had a stimulatory effect on hepatic haem oxidation activity in vitro. It is suggested that the inducing action of Co2+ and other metal ions on microsomal haem oxygenase involves either the covalent binding of the metal ions to some cellular component concerned directly with regulating haem oxygenase or non-specific complex-formation by the metal ions, which depletes some regulatory system in liver cells of an essential component involved in controlling synthesis or activity of the enzyme.  相似文献   

9.
Degradation of cytochrome P-450 was studied in adult rat liver parenchymal cells in primary monolayer culture. In cells incubated in standard culture medium, the amount of cytochrome P-450 decreased at an accelerated rate relative to either the rate of degradation of total protein in the cells or the turnover of cytochrome P-450 in vivo. This change was succeeded by a spontaneous increase in the activity of haem oxygenase, an enzyme system that converts haem into bilirubin in vitro, measured in extracts from the cultured cells. This finding suggests that the rate of cytochrome P-450 breakdown may be controlled by factor(s) other than the activity of haem oxygenase. The decline in cytochrome P-450 and the subsequent increase in haem oxygenase activity was prevented by incubation of hepatocytes in medium containing an inhibitor of protein synthesis such as cycloheximide, puromycin, actinomycin D, or azaserine. The effect of cycloheximide appeared to be due to decreased breakdown of microsomal (14)C-labelled haem. By contrast, cycloheximide was without effect on the degradation of total protein, measured either in homogenates or in microsomal fractions prepared from the cultured cells. These results suggest that the conditions of cell culture stimulate selective degradation of cytochrome P-450 by a process that is inhibited by cycloheximide and hence may require protein synthesis. The findings in culture were verified in parallel studies of cytochrome P-450 degradation in vivo. After administration of bromobenzene, the degradation of the haem moiety of cytochrome P-450 was accelerated in vivo in a manner resembling that observed in cultured hepatocytes. Administration of cycloheximide to either bromobenzene-treated rats or to untreated rats decreased the degradation of the haem moiety of cytochrome P-450. However, the drug failed to affect degradation of haem not associated with cytochrome P-450, suggesting that cycloheximide is not a general inhibitor of haem oxidation in the liver. These findings confirm that the catabolism of hepatic cytochrome P-450 haem is controlled by similar cycloheximide-sensitive processes in the basal steady state in vivo, as stimulated by bromobenzene in vivo, or in hepatocytes under the conditions of cell culture. We conclude that the rate-limiting step in this process appears to require protein synthesis and precedes cleavage of the haem ring.  相似文献   

10.
Isolated rat hepatocytes incubated with two suicide substrates of cytochrome P-450, 2-allyl-2-isopropylacetamide and 3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine(4-ethyl-DD C), convert exogenous mesohaem and deuterohaem into N-alkylated mesoporphyrins and deuteroporphyrins respectively. The N-alkylated mesoporphyrins can be separated by h.p.l.c. from the corresponding N-alkylated protoporphyrins originating from endogenous haem; in this way the contribution of both endogenous and exogenous pools of haem can be studied in the same experiment. N-Alkylated mesoporphyrin exhibits chiral properties, and its isomeric composition and/or amount are dependent on the particular cytochrome P-450 enzyme predominating in the cell. These findings provide additional and more direct evidence that exchangeable haem is taken up by cytochrome P-450 before being N-alkylated.  相似文献   

11.
The effects of inducers of cytochrome P-450 on haem biosynthesis from 5-aminolaevulinate were examined by using cultured chick-embryo hepatocytes. Cultures treated with either 2-propyl-2-isopropylacetamide or 3-methylcholanthrene contained increased amounts of cytochrome P-450 and haem. After treatment for 3 h with 5-amino[4-14C]laevulinate, the relative amounts of radioactivity accumulating as haem corresponded to the relative amounts of total cellular haem, but not to increases in the amounts of cytochrome P-450. Treatment with 5-aminolaevulinate did not alter cellular haem or cytochrome P-450 concentrations in either control or drug-treated cultures. The mechanism of the enhanced accumulation of radioactivity in haem was investigated. Although 2-propyl-2-isopropylacetamide enhanced the uptake of 5-aminolaevulinate and increased the cellular concentration of porphobilinogen 1.5-fold, these changes did not account for the increases in haem radioactivity. The inducing drugs had no effect on the rates of degradation of radioactive haem, but appeared to enhance conversion of protoporphyrin into haem. This latter effect was shown by: (1) a decreased accumulation of protoporphyrin from 5-aminolaevulinate in cells treated with inducers, and (2) complete prevention of this decrease if the iron chelator desferrioxamine was present. We conclude that inducers of cytochrome P-450 may increase haem synthesis not only by increasing activity of 5-aminolaevulinate synthase, but also by increasing conversion of protoporphyrin into haem.  相似文献   

12.
1. The actions of various inhibitors of the microsomal NADPH-cytochrome P-450 electron-transport chain have been studied on the stimulatory effect of carbon tetrachloride on malonaldehyde production. 2. Carbon monoxide, p-chloromercuribenzoate, beta-diethylaminoethyl-3,3'-diphenylpropyl acetate (SKF 525A) and nicotinamide did not decrease the stimulatory action of carbon tetrachloride on malonaldehyde production when present in concentrations shown to be capable of strongly inhibiting the demethylation of aminopyrine. 3. In contrast with the effects of the substances mentioned above, low concentrations of cytochrome c strongly depressed the stimulatory action of carbon tetrachloride on malonaldehyde production while increasing the endogenous rate of peroxidation. 4. Aging the microsomal suspensions at 0 degrees C caused a rapid decrease in aminopyrine demethylation activity and in lipid peroxidation catalysed by ADP and Fe(2+). The stimulation of malonaldehyde production by carbon tetrachloride was relatively unaffected, however, by aging the microsomes at 0 degrees C for 3 days; during this period cytochrome P-450 decreased by more than 30%. 5. The conclusion is reached that the interaction between carbon tetrachloride and the NADPH-cytochrome P-450 electron-transport chain necessary for the stimulation of malonaldehyde production involves a locus near to if not identical with the NADPH-cytochrome c reductase flavoprotein.  相似文献   

13.
Heme oxygenase has been considered to be involved in the predominant pathway of heme degradation in vivo. However, alternative pathways involving cytochrome P-450 reductase, and lipid peroxidation, have previously been demonstrated in vitro, and studies with cultured rat hepatocytes were interpreted to show a majority of endogenous hepatic heme breakdown by non-heme oxygenase pathways. To clarify the pathway of heme breakdown in hepatocytes and the role of heme oxygenase in this process, cultured hepatocytes were pre-labelled with 5-[5-14C]aminolevulinate [( 14C]ALA). Radioactivity in heme, carbon monoxide, and bile pigments was measured for 8-24 h after the removal of [14C]ALA. In cultured chick embryo hepatocytes, which lack biliverdin reductase, the rate of production of biliverdin IXa was closely similar to the rate of catabolism of exogenous heme and radioactivity in carbon monoxide and biliverdin IXa was similar to the loss of radioactivity from endogenous heme. These results support the conclusion that heme breakdown occurred predominantly, if not solely, by heme oxygenase. Also, no evidence of non-heme oxygenase pathways was found in the presence of tin protoporphyrin, an inhibitor of heme oxygenase or mephenytoin, an inducer of both cytochrome P-450 and heme oxygenase. Similarly, in untreated cultured rat hepatocytes, radioactivity in carbon monoxide corresponded with loss of radioactivity in endogenous heme. In other experiments with chick hepatocyte cultures, rates of heme synthesis and breakdown were measured, and data were fitted to various models of hepatic heme metabolism. The results observed were consistent only with models in which an appreciable fraction (control cells, 17%, mephenytoin treated cells, 41%) of the newly synthesized heme was degraded rapidly to biliverdin.  相似文献   

14.
The degradation of cytochrome P-450 heme in the liver has been studied by a new approach. In rats, hepatic heme was labeled by administration of a tracer pulse of [5-14C]δ-aminolevulinic acid (ALA), and its degradation was analyzed in terms of labeled carbon monoxide (14CO) excretion, which is a specific degradation product of the labeled heme. Within minutes after administration of [5-14C]ALA, 14CO was detectable and increased after 2 h to an “early peak,” reflecting the elimination of labeled heme from a rapidly turning over pool in the liver. Beyond the early peak, the rate of 14CO production decreased in a log-linear manner, consistent with the degradation of heme in stable hepatic hemoproteins. From the rate at which 14CO production declined during this phase, from the predominant labeling of cytochrome P-450 heme by the administered [5-14C]ALA and from the known turnover characteristics of this hemoprotein in the liver, it could be inferred that production of 14CO—between 16 and 30 h after administration of labeled ALA—largely reflected degradation of cytochrome P-450 heme. This approach, which permits serial measurements in a single animal, was used to study the effect on cytochrome P-450 heme of administered heme or endotoxin, both of which are potent stimulators of hepatic heme oxygenase activity. Both of these substances caused marked acceleration of the degradation of cytochrome P-450 heme, the effect occurring over the same dose range as that for stimulation of hepatic heme oxygenase. The findings suggest that stimulation of this enzyme activity in the liver is closely related to the rate of degradation of cytochrome P-450 heme.  相似文献   

15.
The effect of administration of carbon tetrachloride and dimethylnitrosamine in vivo on hepatic microsomal function related to drug metabolism was measured. It was found that the capacity of isolated microsomes to demethylate dimethylaniline was diminished during the first hour after carbon tetrachloride poisoning and during the second hour after dimethylnitrosamine poisoning. Thereafter the microsomes from carbon tetrachloride-poisoned livers showed a continuous decline in activity so that at 24hr. there was little residual capacity to undertake demethylation. Microsomes from dimethylnitrosamine-poisoned animals were not different from controls at 24hr. During the first 3hr. there was a transient rise in the accumulation of the N-oxide intermediate in carbon tetrachloride-poisoned livers, with a subsequent fall to below control values. In dimethylnitrosamine poisoning there was a parallel decrease in N-oxide accumulation with decreased demethylation. In the latter part of the first 24hr. the ratio of N-oxide accumulation to demethylation was increased in both instances. At 2hr. after poisoning with either compound there was no evidence of altered NADPH(2)-dependent neotetrazolium reduction or lipid peroxidation. NADPH(2)-dependent azo-dye cleavage was decreased. There was no difference in microsomal cytochrome b(5) content, but there was a decrease in the amount of cytochrome P-450. This latter change was correlated with the decreased capacity for NADPH(2)-dependent oxidative demethylation. It is suggested that dimethylnitrosamine is associated with a defect in microsomal NADPH(2)-dependent electron transport at the level of cytochrome P-450. In addition to affecting cytochrome P-450, carbon tetrachloride is associated with a second severe block involving the release of formaldehyde from the N-oxide intermediate.  相似文献   

16.
1. A continuous spectrophotometric determination of rat hepatic microsomal anaerobic azo reductase activity has been developed. 2. The addition of soluble flavins (riboflavin, FMN or FAD) greatly increased this NADPH-dependent activity towards a number of azo substrates. 3. Investigations with amaranth as substrate gave an apparent Km of 34 microM and Vmax. of 4 nmol/min per mg of microsomal protein. The inclusion of a fixed concentration of FMN increased Vmax. and greatly decreased Km, the magnitude of these changes reflecting the concentration of flavin present. 4. Investigations using a fixed amaranth concentration over a range of flavin concentrations gave biphasic double-reciprocal plots with two apparent Km and Vmax. values. 5. Pretreatment of animals with cobaltous chloride, 2-allyl-2-isopropylacetamide, carbon tetrachloride, phenobarbitone and 3-methylcholanthrene altered azo reductase activity in parallel with changes in cytochrome P-450 content. 6. The significance of these results is discussed in terms of the electron-transfer components present in the hepatic microsomal fraction.  相似文献   

17.
Extrahepatic sites of metabolism of carbon tetrachloride in rats   总被引:2,自引:0,他引:2  
Rats were injected i.v. and i.p. with [14C]carbon tetrachloride and the localization and binding of metabolites in the tissues were studied by autoradiography. Based on the autoradiographic findings, various tissues were tested for their capacity to form 14CO2 from [14C]carbon tetrachloride in vitro. Autoradiography in vitro was used to localize the sites of [14C]carbon tetrachloride metabolism under in vitro conditions. The results showed that several tissues accumulating metabolites in vivo had an ability to form 14CO2 in vitro, and accumulation of metabolites was observed also under the in vitro conditions. These results indicate that carbon tetrachloride is metabolized in many extrahepatic tissues in vivo. The structures identified to have a marked carbon tetrachloride-metabolizing capacity were, besides the liver, the mucosa of the bronchial tree, the tracheal mucosa, the olfactory and respiratory nasal mucosa, the oesophageal mucosa, the mucosa of the larynx, the tongue and the cheeks, the lateral nasal gland and the kidney cortex. It is well established that the degradation of carbon tetrachloride involves the cytochrome P-450 system, and the metabolism of the substance in the mentioned tissues is probably correlated to high concentrations of cytochrome P-450. The nasal olfactory mucosa was found to be the tissue with the highest capacity to form 14CO2 from the [14C]carbon tetrachloride and microautoradiography indicated that in this tissue the cells of the subepithelial glands of the lamina propria mucosae are most actively engaged in the metabolism. It was also shown that cytochrome P-450 is present in the nasal olfactory mucosa.  相似文献   

18.
Destruction of hepatic cytochrome P-450 during catalytic processing of 1-amino-benzotriazole is accompanied by an equal loss of microsomal haem but not by loss of cytochrome b5, or stimulation of lipid peroxidation. An abnormal porphyrin, tentatively identified as an NN-bridged benzyne-protoporphyrin IX adduct, appears to be formed by the addition of catalytically generated benzyne to prosthetic haem.  相似文献   

19.
Phenylhydrazine was found to be a potent inducer of microsomal haem oxygenase activity in rat liver and kidney, but not in spleen. The phenylhydrazine-mediated increase in haem oxygenase activity was time-dependent. Maximum activity was attained 12h after treatment in the liver, and 24h after treatment in the kidney. The increases in the activity of haem oxygenase in the liver and the kidney could be inhibited by cycloheximide. Furthermore, the increases could not be elicited by the treatment of microsomal preparations in vitro with phenylhydrazine. In consonance with the increased haem oxygenase activity, a marked increase (16-fold) was observed in the serum total bilirubin concentration in phenylhydrazine-treated rats. The mechanism of haem degradation promoted by phenylhydrazine in vivo appears to differ from that in vitro; only in the former case is bilirubin formed as the end-product of haem degradation. When rats were given zinc-protoporphyrin (40 mumol/kg) 12h before and after phenylhydrazine treatment, the phenylhydrazine-mediated increases in haem oxygenase activity in the liver and the kidney were effectively blocked. Treatment of rats in vivo with the metalloporphyrin also inhibited the activity of splenic haem oxygenase, and promoted a major decrease in the serum bilirubin levels. In phenylhydrazine-treated animals, the microsomal content of cytochrome P-450 was significantly decreased in the absence of a decrease in the microsomal haem concentration. The decrease in cytochrome P-450 content was accompanied by an increased absorption in the 420nm region of the reduced CO-difference spectrum, suggesting the conversion of the cytochrome to an inactive form. The marked depletion of cellular glutathione levels suggests that this conversion may be related to the action of active intermediates and free radicals formed in the course of the interaction of phenylhydrazine with the haem moiety of cytochrome P-450.  相似文献   

20.
We studied drug- and metal-mediated increases in activity of haem oxygenase, the rate-controlling enzyme for haem breakdown, in chick-embryo hepatocytes in ovo and in primary culture. Phenobarbitone and phenobarbitone-like drugs (glutethimide, mephenytoin), which are known to increase concentrations of an isoform of cytochrome P-450 in chick-embryo hepatocytes, were found to increase activities of haem oxygenase as well. In contrast, 20-methylcholanthrene, which increases the concentration of a different isoform of cytochrome P-450, had no effect on activity of haem oxygenase. Inhibitors of haem synthesis, 4,6-dioxoheptanoic acid or desferrioxamine, prevented drug-mediated induction of both cytochrome P-450 and haem oxygenase in embryo hepatocytes in ovo or in culture. Addition of haem restored induction of both enzymes. These results are interpreted to indicate that phenobarbitone and its congeners induce haem oxygenase by increasing hepatic haem formation. In contrast, increases in haem oxygenase activity by metals such as cobalt, cadmium and iron were not dependent on increased haem synthesis and were not inhibited by 4,6-dioxoheptanoic acid. We conclude that (1) induction of hepatic haem oxygenase activity by phenobarbitone-type drugs is due to increased haem formation, and (2) induction of haem oxygenase by drugs and metals occurs by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号