首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
We previously reported that atrial natriuretic factor (ANF) stimulates pancreatic secretion through NPR-C receptors coupled to PLC and potentiates secretin response without affecting cAMP levels. In the present study we sought to establish the intracellular signaling mechanism underlying the interaction between both peptides. In isolated pancreatic acini 100 nM ANF abolished cAMP accumulation evoked by any dose of secretin. Lower doses of ANF (1 fM, 1 pM, 1 and 10 nM) dose dependently reduced EC50 secretin-evoked cAMP. Although ANF failed to affect cAMP stimulated by amthamine (selective H2 agonist) or isoproterenol (beta-adrenergic agonist), it abolished VIP-induced cAMP formation. ANF inhibitory effect was prevented by U-73122 (PLC inhibitor) and GF-109203X (PKC inhibitor) but unaltered by PKG and nitric oxide synthase inhibition, supporting that the PLC/PKC pathway mediated the effect. ANF response was mimicked by cANP (4-23 amide) and abolished by pertussis toxin, strongly supporting NPR-C receptor activation. In vivo studies showed that ANF at 0.5 microg x kg(-1) x h(-1) enhanced secretion stimulated by 1 U x kg(-1) x h(-1) secretin but at 1 and 2 microg x kg(-1) x h(-1) it abolished secretin response. However, ANF at such doses failed to modify the secretion evoked by carbachol or CCK. Present results show that ANF negatively modulated secretin secretory response and intracellular signaling through the activation of NPR-C receptors coupled to the PLC/PKC pathway. Furthermore, the finding that ANF also inhibited VIP-evoked cAMP supports a selective modulation of class II G-protein coupled receptors by ANF. Present findings suggest that ANF may play a protective role by reducing secretin response to avoid overstimulation.  相似文献   

2.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal peptide/secretin family. Using microphysiometry, we have found that PACAP acutely (1 min) increased the extracellular acidification rate (ECAR) in GH4C1 cells approximately 40% above basal in a concentration-dependent manner. ECAR, maximally induced by PACAP, can be increased further by thyrotropin-releasing hormone (TRH), indicating that the signalling pathways for these two neuropeptides are not identical. In studies on the mechanism of PACAP-enhanced ECAR, we found that maximum stimulation of the cAMP/PKA pathway by treatment with FSK, or the PKC pathway with PMA, did not inhibit the ECAR response to PACAP. The PKC inhibitor calphostin C and the MAP kinase inhibitor PD98059 had no effect on the ECAR response to PACAP. Furthermore, PACAP induced little or no change in cytosolic Ca(2+) ([Ca(2+)](i)), while TRH induced a large increase in [Ca(2+)](i). However, the tyrosine kinase inhibitor genistein completely blocked PACAP-induced ECAR, suggesting involvement of tyrosine kinase(s). We conclude that PACAP causes an increase in ECAR in GH4C1 rat pituitary cells, which is not dependent on the PKA, PKC, MAP kinase or Ca(2+) signalling pathways, but does require tyrosine kinase activity.  相似文献   

3.
Prostaglandin E2 (PGE2) is an important mediator of diverse biologic functions in many tissues and binds with high affinity to four cell surface, seven-transmembrane domain, G protein-coupled receptors (EP1-EP4). The EP4 receptor subtype has a long intracellular carboxy-terminal region and is functionally coupled to adenylate cyclase, resulting in elevated intracellular cyclic adenosine 5' monophosphate (cAMP) levels upon activation. To further study EP4 receptor subtype function, a canine kidney cDNA library was screened and three clones were isolated and sequenced. The longest clone was 3,103 bp and contained a single open reading frame of 1,476 bp, potentially encoding a protein of 492 amino acids with a predicted molecular weight of 53.4 kDa. Sequence analysis of this open reading frame reveals 89% identity to the human EP4 protein coding region at the nucleotide level and 90% identity when the putative canine and human protein sequences are compared. Northern blot analysis showed relatively high levels of canine EP4 expression in heart, lung and kidney, while Southern blot analysis of canine genomic DNA suggests the presence of a single copy gene. Following transfection of canine EP4 into CHO-KI cells, Scatchard analysis revealed a dissociation constant of 24 nM for PGE, while competition binding studies using 3H-PGE2 as ligand demonstrated specific displacement by PGE2 prostaglandin E, (PGE1), and prostaglandin A3 (PGA3). Treatment with PGE2 also resulted in increased levels of cAMP in transfected, but not in parental, CHO-KI cells. In contrast, butaprost, an EP2 selective ligand, and sulprostone, an EP1/EP3 selective ligand, did not bind to this receptor at the maximal concentration used (320 nM). To further investigate secondary signaling, the canine EP4 cDNA was truncated to produce an 1,117 bp fragment encoding a 356 amino acid protein lacking the intracellular carboxy-terminus. When transfected, this truncated cDNA produced a protein with a dissociation constant of 11 nM for PGE2 and a binding and cAMP accumulation profile similar to that of the full-length protein. Both full-length and truncated canine EP4 underwent short term PGE2-induced desensitization as shown by a lack of continuing cAMP accumulation after the initial PGE2 stimulation, suggesting no involvement of the C-terminal intracellular tail. This result is in contrast to that reported for the human EP4 receptor, where residues within the C-terminal intracellular tail were shown to mediate short term, ligand induced desensitization.  相似文献   

4.
Ovarian cancer G-protein-coupled receptor 1 (OGR1) and GPR4 have recently been identified as proton-sensing or extracellular pH-responsive G-protein-coupled receptors stimulating inositol phosphate production and cAMP accumulation, respectively. In the present study, we found that OGR1 and GPR4 mRNAs were expressed in human aortic smooth muscle cells (AoSMCs). Acidic extracellular pH induced inositol phosphate production, a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), and cAMP accumulation in these cells. When small interfering RNAs (siRNAs) targeted for OGR1 and GPR4 were transfected to the cells, the acid-induced inositol phosphate production and [Ca(2+)](i) increase were markedly inhibited by the OGR1 siRNA but not by the GPR4 siRNA. Unexpectedly, the acid-induced cAMP accumulation was also largely inhibited by OGR1 siRNA but only slightly by GPR4 siRNA. Acidic extracellular pH also stimulated prostaglandin I2 (PGI(2)) production, which was again inhibited by OGR1 siRNA. The specific inhibitors for extracellular signal-regulated kinase kinase and cyclooxygenase attenuated the acid-induced PGI(2) production and cAMP accumulation without changes in the inositol phosphate production. A specific inhibitor of phospholipase C also inhibited the acid-induced cAMP accumulation. In conclusion, OGR1 is a major receptor involved in the extracellular acid-induced stimulation of PGI(2) production and cAMP accumulation in AoSMCs. The cAMP accumulation may occur through OGR1-mediated stimulation of the phospholipase C/cyclooxygenase/PGI(2) pathway.  相似文献   

5.
Two types of binding sites have previously been described for neuropeptide Y (NPY), called Y1 and Y2 receptors. The intracellular events following Y1 receptor activation was studied in the human neuroblastoma cell line SK-N-MC. Both NPY and the specific Y1 receptor ligand, [Leu31,Pro34]-NPY, caused a rapid and transient increase in the concentration of free calcium in the cytoplasm as measured by the fluorescent probe, Fura-2. The effect of both peptides was independent of extracellular calcium as addition of EGTA or manganese neither changed the size nor the shape of the calcium response. The calcium response to NPY was abolished by pretreatment with thapsigargin, which can selectively deplete a calcium store in the endoplasmic reticulum. Y1 receptor stimulation, by both NPY and [Leu31,Pro34]NPY, also inhibited the forskolin-stimulated cAMP production with an EC50 of 3.5 nM. There was a close relation between the receptor binding and the cellular effects as half-maximal displacement of [125I-Tyr36]monoiodoNPY from the receptor was obtained with 2.1 nM NPY. The Y2-specific ligand NPY(16-36)peptide had no effect on either intracellular calcium or cAMP levels in the SK-N-MC cells. It is concluded that Y1 receptor stimulation is associated with both mobilization of intracellular calcium and inhibition of adenylate cyclase activity.  相似文献   

6.
Gonadotropin-releasing hormone (GnRH), acting via the GnRH receptor, elicited rapid extracellular acidification responses in mouse gonadotrope-derived alphaT3-1 cells as measured by the Cytosensor microphysiometer, which indirectly monitors cellular metabolic rates. GnRH increased the extracellular acidification rate of the cells in a dose-dependent manner (EC(50) = 1.81 +/- 0.24 nM). The GnRH-stimulated acidification rate could be attenuated by protein kinase C (PKC) down-regulation, extracellular Ca2+ depletion, and the voltage-sensitive Ca2+ channel (VSCC) blocker nifedipine, indicating that the acidification response is activated by both Ca2+ and PKC-mediated pathways. Upon continuous exposure to 100 nM GnRH or periodic stimulation by 10 nM GnRH at 40 min intervals, homologous desensitization was more pronounced in the absence of extracellular Ca2+, suggesting that desensitization of GnRH activity may be mediated via depletion of intracellular Ca2+ stores. We have also compared the potency of eight GnRH analogs on alphaT3-1 cells. No acidification response was detected for GnRH free acid, consistent with the idea that the C-terminal amide is a critical structural determinant for GnRH activity. Replacement of Gly-NH(2) at the C-terminus by N-ethylamide dramatically reduced the EC(50) value, suggesting that substitution of the Gly-NH(2) moiety by N-ethylamide increases the potency of GnRH analogs. Substitution of Gly at position 6 by D-Trp significantly reduced the EC(50) value, whereas D-Lys at the same position slightly increased the EC(50) value, implying that either an aromatic amino acid or a non-basic amino acid at position 6 may be essential for potent GnRH agonists. In summary, our results demonstrate that the Cytosensor microphysiometer can be used to evaluate the actions of GnRH and GnRH analogs in alphaT3-1 cells in a real-time and noninvasive manner. This silicon-based microphysiometric system should provide new information on the structure-function studies of GnRH and is an invaluable tool for the screening of new GnRH agonists and antagonists in the future.  相似文献   

7.
The effects of the synthetic glucocorticoid dexamethasone on the cAMP content of murine T lymphocyte cell lines has been investigated. Incubation of the 3B4.15 T cell hybrids with dexamethasone results in an average 5-fold increase in intracellular cyclic AMP levels after 6 h of treatment. This phenomenon is abolished in the presence of RU486 and of cycloheximide, indicating that it requires binding of the drug to the intracellular glucocorticoids receptor and de novo protein synthesis. Dexamethasone-induced elevation of intracellular cyclic AMP correlates with both an increase in adenylate cyclase activity and a decrease in phosphodiesterase activity in T cell hybrids. This modulation of cyclic AMP metabolism is independent of serum-derived factors, suggesting that it is not secondary to transmembrane receptor stimulation by an extracellular ligand. We propose that glucocorticoids interfere with the homeostatic control of intracellular cAMP concentration, leading to a sustained increase in the content of this important second messenger in murine T lymphocyte cell lines. This study suggests that elevation of cAMP levels may represent one way by which glucocorticoids modulate the immune response.  相似文献   

8.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

9.
10.
The intracellular concentration of free Ca2+ was monitored by measuring the fluorescence of fura-2 loaded Human Erythroleukemia Cells. Neuropeptide Y (NPY) increased intracellular Ca2+ in a dose-dependent manner and the 50% effective concentration was 2 nM. Chelation of extracellular Ca2+ by EGTA did not reduce the NPY-mediated increase in cytoplasmic Ca2+, indicating that the increase in fluorescence was due to the release of intracellular Ca2+. A second dose of NPY, after intracellular Ca2+ had returned to basal levels, failed to elicit a response, indicating that the NPY receptor had undergone desensitization. In similar experiments, NPY increased the formation of inositol phosphates, suggesting that the mobilization of Ca2+ from intracellular stores in HEL cells was secondary to the generation of inositol phosphates and stimulation of phospholipase C.  相似文献   

11.
12.
Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone peptides, but its signaling pathways remain to be elucidated. In this study, we molecularly characterized the signaling of Bombyx AKH receptor (AKHR) and its peptide ligands in HEK293 cells. In HEK293 cells stably expressing AKHR, AKH1 stimulation not only led to a ligand concentration dependent mobilization of intracellular Ca2+ and cAMP accumulation, but also elicited transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. We observed that AKH receptor was rapidly internalized after AKH1 stimulation. We further demonstrated that AKH2 exhibited high activities in cAMP accumulation and ERK1/2 activation on AKHR comparable to AKH1, whereas AKH3 was much less effective.  相似文献   

13.
14.
Acid secretion in isolated rabbit gastric glands was monitored by the accumulation of [(14)C]aminopyrine. Stimulation of the glands with carbachol synergistically augmented the response to dibutyryl cAMP. The augmentation persisted even after carbachol was washed out and was resistant to chelated extracellular Ca(2+) and to inhibitors of either protein kinase C or calmodulin kinase II. Cytochalasin D at 10 microM preferentially blocked the secretory effect of carbachol and its synergism with cAMP, whereas it had no effect on histamine- or cAMP-stimulated acid secretion within 15 min. Cytochalasin D inhibited the carbachol-stimulated intracellular Ca(2+) concentration ([Ca(2+)](i)) increase due to release from the Ca(2+) store. Treatment of the glands with cytochalasin D redistributed type 3 inositol 1,4,5-trisphosphate receptor (the major subtype in the parietal cell) from the fraction containing membranes of large size to the microsomal fraction, suggesting a dissociation of the store from the plasma membrane. These findings suggest that intracellular Ca(2+) release by cholinergic stimulation is critical for determining synergism with cAMP in parietal cell activation and that functional coupling between the Ca(2+) store and the receptor is maintained by actin microfilaments.  相似文献   

15.
Dong M  Pinon DI  Miller LJ 《Regulatory peptides》2002,109(1-3):181-187
Photoaffinity labeling is a powerful approach for direct elucidation of residue-residue approximations as a ligand is bound to its receptor, providing important constraints for molecular modeling. Probes utilized for this need to incorporate photolabile sites of covalent attachment and an indicator, such as a radiolabel. Radioiodine provides a particularly useful high specific radioactivity label, but due to its size, can only be accommodated in limited positions within a peptide ligand. In this work, we attempted to develop a probe for the secretin receptor that would directly provide spatial approximation data for position 10 of secretin, its site of radiolabeling. This was achieved by incorporation into a secretin analogue of the radioiodinatable and photolabile benzophenone moiety, p-(4-hydroxybenzoyl)phenylalanine (OH-Bpa). An unintended additional modification of secretin in synthesizing this probe was the elimination of Gly(4). This probe was shown to bind to the secretin receptor specifically and saturably (K(i)=25.3+/-6.0 nM). It represented a full agonist, stimulating intracellular cAMP in a concentration-dependent manner (EC(50)=4.2+/-0.7 nM). It was also able to affinity label the secretin receptor in a specific and efficient manner. This probe should provide the opportunity to identify the region of the secretin receptor in spatial approximation with position 10, within the pharmacophore of secretin, leading to refinement of molecular conformational models of this agonist-bound receptor.  相似文献   

16.
17.
18.
The cDNAs encoding the murine LH receptor (LHR) and the human beta 2-adrenoceptor (h beta 2AR) were cloned and RNAs complementary to their sense strands (cRNAs) were injected into defolliculated Xenopus oocytes. This led to expression, respectively, of LH- and isoproterenol-stimulable adenylyl cyclase activities, indicating that functionally active receptor cDNAs had been cloned. In oocytes injected with LHR cRNA, but not in control or h beta 2AR cRNA-injected oocytes, human CG and LH increased a Ca(2+)-activated Cl- current, as measured by the two-microelectrode voltage-clamp method. This effect was not seen with isoproterenol in control or h beta 2AR cRNA-injected oocytes, it was also not observed in response to forskolin or (Bu)2cAMP. The response to human CG could be obtained in the absence of extracellular Ca2+ but was abolished by injection of EGTA, indicating that it was caused by mobilization of Ca2+ from intracellular stores. The response was unaffected by overnight treatment with 1 microgram/ml pertussis toxin. The experiments show that a glycoprotein hormone receptor can be expressed as a functionally active molecule in Xenopus oocytes, and that the LHR has the ability of activating two separate intracellular signaling pathways: one forming the second messenger cAMP, and the other mobilizing Ca2+ from intracellular stores. It is proposed that the latter is secondary to a primary activation of phospholipase C by the LHR, which elevates intracellular Ca2+ via intermediary elevation of inositol phosphates, presumably (1,4,5)inositol trisphosphate.  相似文献   

19.
Bicarbonate excretion in bile is a major function of the biliary epithelium. It is driven by the apically located Cl-/HCO3- exchanger which is functionally coupled with a cAMP-dependent Cl- channel (CFTR). A number of hormones and/or neuropeptides with different mechanisms and at different intracellular levels regulate, in concert, the processes underlying bicarbonate excretion in the biliary epithelium. Secretin induces a bicarbonate rich choleresis by stimulating the activity of the Cl-/HCO3- exchanger by cAMP and protein kinase A mediated phosphorylation of CFTR regulatory domain. Protein phosphatase 1/2A are involved in the run-down of secretory stimulus after secretin removal. Acetylcholine potentiates secretin-choleresis by inducing a Ca(++)-calcineurin mediated "sensitization" of adenyl cyclase to secretin. Bombesin and vasoactive intestinal peptide also enhance the Cl-/HCO3- exchanger activity, but the intracellular signal transduction pathway has not yet been defined. Somatostatin and gastrin inhibit basal and/or secretin-stimulated bicarbonate excretion by down-regulating the secretin receptor and decreasing cAMP intracellular levels induced by secretin.  相似文献   

20.
CGRP is a potent vasodilator with increased levels in fetoplacental circulation during late pregnancy. We have recently demonstrated that acute CGRP exposure to fetoplacental vessels in vitro induced vascular relaxation, but the signaling pathway of CGRP in fetoplacental vasculature remains unclear. We hypothesized that CGRP relaxes fetoplacental vasculature via regulating smooth muscle cytosolic Ca2+ concentrations. In the present study, by using human umbilical vein smooth muscle (HUVS) cells (HUVS-112D), we examined CGRP receptors, cAMP generation, and changes in cellular Ca2+ concentrations on CGRP treatment. These cells express mRNA for CGRP receptor components, calcitonin receptor-like receptor, and receptor activity-modifying protein-1. Direct saturation binding for 125I-labeled CGRP to HUVS cells and Scatchard analysis indicate specificity of the receptors for CGRP [dissociation constant (K(D)) = 67 nM, maximum binding capcity (Bmax) = 2.7 pmol/million cells]. Exposure of HUVS cells to CGRP leads to a dose-dependent increase in intracellular cAMP accumulation, and this increase is prevented by CGRP antagonist CGRP(8-37). Using fura-2-loaded HUVS cells, we monitored the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]i). In the presence of extracellular Ca2+, bradykinin (10(-6) M), a fetoplacental vasoconstrictor, increases HUVS cells [Ca2+]i concentration. CGRP (10(-8) M) abolishes bradykinin-induced [Ca2+]i elevation. When the cells were pretreated with glibenclamide, an ATP-sensitive potassium channel blocker, the CGRP actions on bradykinin-induced Ca2+ influx were profoundly inhibited. In the absence of extracellular Ca2+, CGRP (10(-8) M) attenuated the increase of [Ca2+]i induced by a sarcoplasmic reticulum Ca2+ pump ATPase inhibitor thapsigargin (10(-5) M). Furthermore, Rp-cAMPS, a cAMP-dependent protein kinase A inhibitor, blocks CGRP actions on thapsigargin-induced Ca2+ release from sarcoplasmic reticulum. Our results suggested that CGRP relaxes human fetoplacental vessels by not only inhibiting the influx of extracellular Ca2+ but also attenuating the release of intracellular Ca2+ from the sarcoplasmic reticulum, and these actions might be attributed to CGRP-induced intracellular cAMP accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号