首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comprehending ecological dynamics requires not only knowledge of modern communities but also detailed reconstructions of ecosystem history. Ancient DNA (aDNA) metabarcoding allows biodiversity responses to major climatic change to be explored at different spatial and temporal scales. We extracted aDNA preserved in fossil rodent middens to reconstruct late Quaternary vegetation dynamics in the hyperarid Atacama Desert. By comparing our paleo‐informed millennial record with contemporary observations of interannual variations in diversity, we show local plant communities behave differentially at different timescales. In the interannual (years to decades) time frame, only annual herbaceous expand and contract their distributional ranges (emerging from persistent seed banks) in response to precipitation, whereas perennials distribution appears to be extraordinarily resilient. In contrast, at longer timescales (thousands of years) many perennial species were displaced up to 1,000 m downslope during pluvial events. Given ongoing and future natural and anthropogenically induced climate change, our results not only provide baselines for vegetation in the Atacama Desert, but also help to inform how these and other high mountain plant communities may respond to fluctuations of climate in the future.  相似文献   

2.
Aim We evaluated the phylogeography of sigmodontine taxa of the genera Phyllotis and Abrothrix at the intra and interspecific level, in the Atacama desert and adjacent Andean and Puna regions of northern Chile. The major goal was to test the hypothesis that sigmodontine mice differentiated in the lowlands, most likely via peripatric speciation, dispersing from highland to lowland areas across the desert vegetated canyons, thus reaching the Pacific coast. Dispersing individuals may have found favourable habitats along these valleys, in northern Chile, which connect the high altitude Puna region with the lowlands. Location The study was conducted in northern Chile (18–22° S), in coastal pre‐Puna and Puna regions. Methods For phylogeographic analyses we analysed cytochrome b mitochondrial sequences for 29 specimens of the genera Abrothrix and Phyllotis, from the region of study. All results were analysed phylogenetically using maximum‐likelihood, Bayesian, and uncorrected median‐joining network methodology. Results In Phyllotis we recognized two major clusters of taxa: one restricted to the Puna region identified as Phyllotis xanthopygus chilensis, in close association to a pre‐Punean and lowland clade constituted by Phyllotis limatus, on the western slopes of the Andes. A similar pattern was distinguished for Abrothrix, where Abrothrix andinus was recognized in the Andean Altiplano‐pre‐Puna region and Abrothrix olivaceus in the lowlands of northern Chile. Main conclusions We found that the radiation of sigmodontine mice in the central Andes may have been facilitated by the historical events that affected high Andean elevations during Pleistocene times, as well as changes in the vegetation composition and climate that started to prevail during that time. Our results also support previous hypotheses that the major mode of evolution for small mammals in the Andes region has been based on the founder effect or the peripheral isolates model, from a central range located in the Andes.  相似文献   

3.
The Atacama Desert presents one of the most extreme environments on Earth and we report here the first extensive isolations of actinomycetes from soils at various locations within the Desert. The use of selective isolation procedures enabled actinomycetes to be recovered from arid, hyper-arid and even extreme hyper-arid environments in significant numbers and diversity. In some cases actinomycetes were the only culturable bacteria to be isolated under the conditions of this study. Phylogenetic analysis and some phenotypic characterisation revealed that the majority of isolates belonged to members of the genera Amycolatopsis, Lechevalieria and Streptomyces, a high proportion of which represent novel centres of taxonomic variation. The results of this study support the view that arid desert soils constitute a largely unexplored repository of novel bacteria, while the high incidence of non-ribosomal peptide synthase genes in our isolates recommend them as promising material in screening for new bioactive natural products.  相似文献   

4.
A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T = NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5 Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils.  相似文献   

5.
Aim To document the impact of late Quaternary pluvial events on plant movements between the coast and the Andes across the Atacama Desert, northern Chile. Location Sites are located along the lower and upper fringes of absolute desert (1100–2800 m a.s.l.), between the western slope of the Andes and the Coastal Ranges of northern Chile (24–26° S). Methods We collected and individually radiocarbon dated 21 rodent middens. Plant macrofossils (fruits, seeds, flowers and leaves) were identified and pollen content analysed. Midden assemblages afford brief snapshots of local plant communities that existed within the rodents’ limited foraging range during the several years to decades that it took the midden to accumulate. These assemblages were then compared with modern floras to determine the presence of extralocal species and species provenance. Results Five middens span the last glacial period (34–21 ka) and three middens are from the last glacial–interglacial transition (19–11 ka). The remaining 13 middens span the last 7000 years. Coastal hyperarid sites exhibit low taxonomic richness in middens at 19.3, 1.1, 1.0, 0.9, 0.5 ka and a modern sample. Middens are also dominated by the same plants that occur today. In contrast, middens dated to 28.1, 21.3, 17.3, 3.7 and 0.5 ka contain more species, including Andean extralocals. Precordillera middens (c. 2700 m) show a prominent increase in plant macrofossil richness, along with the appearance of Andean extralocals and sedges at 34.5 and 18.9 ka. Six younger middens dated to 6.10.1 ka are similar to the modern local vegetation. Main conclusions Increased species richness and Andean extralocal plants occurred along the current lower fringes of absolute desert during the last glacial–interglacial transition and late Holocene. The absence of soil carbonates indicates the persistence of absolute desert throughout the Quaternary. Colonization by Andean plants could have been accomplished through long‐distance seed dispersal either by animals or floods that originated in the Andes. We postulate that dispersal would have been most frequent during regional pluvial events and associated increases in groundwater levels, forming local wetlands in the absolute desert, and generating large floods capable of crossing the Central Depression.  相似文献   

6.
7.
8.
9.
We determined the seasonal diet of the variable hawk, Geranoaetus polyosoma, in a hyperarid and threatened habitat in the Atacama Desert, northern Chile, by analysing the contents of the bird's pellets. We estimated the biomass and number of individuals of each prey species consumed. We compared our results with those of other studies on G. polyosoma in South America. In general, the diet was characterised by extremely low number of prey, low diversity of species consumed and high dietary breadth. In contrast with other biomes of Chile, in our study reptiles formed the dominant food item and accounted for the highest percentage of biomass consumed from autumn to spring, with rodents being a seasonally significant major food item. Arthropods were also consumed, but the biomass ingested was negligible. Statistically significant differences were noted across seasons in the prey items consumed, reflecting a flexible and opportunistic response to the scarcity of prey available. Our findings add to the data present on the basic natural history of G. polyosoma and can aid in its conservation in the Atacama Desert.  相似文献   

10.
Sporadic rains in the Atacama Desert reveal a high biodiversity of plant species that only occur there. One of these rare species is the “Red añañuca” (Zephyranthes phycelloides), formerly known as Rhodophiala phycelloides. Many species of Zephyranthes in the Atacama Desert are dangerously threatened, due to massive extraction of bulbs and cutting of flowers. Therefore, studies of the biodiversity of these endemic species, which are essential for their conservation, should be conducted sooner rather than later. There are some chloroplast genomes available for Amaryllidaceae species, however there is no complete chloroplast genome available for any of the species of Zephyranthes subgenus Myostemma. The aim of the present work was to characterize and analyze the chloroplast of Z. phycelloides by NGS sequencing. The chloroplast genome of the Z. phycelloides consists of 158,107 bp, with typical quadripartite structures: a large single copy (LSC, 86,129 bp), a small single copy (SSC, 18,352 bp), and two inverted repeats (IR, 26,813 bp). One hundred thirty-seven genes were identified: 87 coding genes, 8 rRNA, 38 tRNA and 4 pseudogenes. The number of SSRs was 64 in Z. phycelloides and a total of 43 repeats were detected. The phylogenetic analysis of Z. phycelloides shows a distinct subclade with respect to Z. mesochloa. The average nucleotide variability (Pi) between Z. phycelloides and Z. mesochloa was of 0.02000, and seven loci with high variability were identified: psbA, trnSGCU-trnGUCC, trnDGUC-trnYGUA, trnLUAA-trnFGAA, rbcL, psbE-petL and ndhG-ndhI. The differences between the species are furthermore confirmed by the high amount of SNPs between these two species. Here, we report for the first time the complete cp genome of one species of the Zephyranthes subgenus Myostemma, which can be used for phylogenetic and population genomic studies.  相似文献   

11.
The Atacama Desert, one of the driest deserts in the world, represents a unique extreme environmental ecosystem to explore the bacterial diversity as it is considered to be at the dry limit for life. A 16S rRNA gene (spanning the hyper variable V3 region) library was constructed from an alkaline sample of unvegetated soil at the hyperarid margin in the Atacama Desert. A total of 244 clone sequences were used for MOTHUR analysis, which revealed 20 unique phylotypes or operational taxonomic units (OTUs). V3 region amplicons of the 16S rRNA were suitable for distinguishing the bacterial community to the genus and specie level. We found that all OTUs were affiliated with taxa representative of the Firmicutes phylum. The extremely high abundance of Firmicutes indicated that most bacteria in the soil were spore-forming survivors. In this study we detected a narrower diversity as compared to other ecological studies performed in other areas of the Atacama Desert. The reported genera were Oceanobacillus (representing the 69.5 % of the clones sequenced), Bacillus, Thalassobacillus and Virgibacillus. The present work shows physical and chemical parameters have a prominent impact on the microbial community structure. It constitutes an example of the communities adapted to live in extreme conditions caused by dryness and metal concentrations .

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0539-3) contains supplementary material, which is available to authorized users.  相似文献   

12.
The hyperarid core of the Atacama Desert represents one of the driest places on Earth with an exceptional occurrence of microbial life coping with extreme environmental stress factors. The gypsum crusts have already been found to harbor diverse communities in this area. Here, we present a Raman spectroscopic study, complemented by correlative microscopic imaging using SEM-BSE and fluorescence microscopy, of the endolithic microbial communities inside the Ca-sulphate crusts dominated by phototrophic microorganisms. Differences of pigment composition within different zones follow the cyanobacterial and algal colonization and also reveal the degradation of phycobiliproteins within the decayed biomass of cyanobacteria. Carotenoids of at least three different types were recognized, differing in dependence on the particular phylum of phototrophic microorganisms. Moreover, calcium oxalate monohydrate – whewellite – was found to be associated with the algae and hyphal associations living in the lower regions of the crust. The 785 nm excitation wavelength employed here was found to be the correct source for studying pigment composition as well as for the detection of the oxalate. A comparison of these results with those using 514.5 nm laser excitation which is widely adopted for the detection of carotenoids due to the resonance Raman effect is made and discussed.  相似文献   

13.
The Andean tuco-tuco, Ctenomys fulvus (Rodentia: Ctenomyidae) inhabits one of the most arid regions of the world, the Salar de Atacama, Northeast of Antofagasta, Chile (23°17′06″S, 68°05′43″W; 2.240 m.a.s.l). We found that a stable microclimate in burrows, a low evaporative water loss (EWL), and a diet of roots (59% water content) are the main factors that permit the survival of this fossorial species in harsh desert conditions. Large circadian variation in Ta was observed above ground. Daily ΔTa (Ta max − Ta min) = 37.9±0.2°C in summer and in winter. In contrast, circadian variation of Ta inside the burrows was only 5.8±0.5°C in the same seasons. Relative humidity (RH) was 1.9–3.1% during the day, increasing to maximum values of 27% at night and early morning. Inside the burrows RH was higher and quite stable, ranging between 53.1 and 65%, independent of the time of day and season. EWL, measured between 10 and 25°C, was low (1.26 mg/g h), and a moderate increase of 13–20% was observed at higher temperatures. The low EWL may prevent dehydration. However, because of the low heat loss capability, animals became hyperthermic (0.8–1.6°C) in dry air at Ta=30–35°C. As Ta during afternoon normally exceeded 35°C, the microclimate of burrows provided the only way to avoid the lethal effects of hyperthermia.  相似文献   

14.
15.
16.
17.
Spores of Bacillus subtilis, conidia of Aspergillus niger, versicolor and ochraceus andcells of Deinococcus radiodurans have been exposed in the dark at two locations (at about 23°S and 24°S) in the Atacama Desert for up to 15 months. B. subtilis spores (survival 15%) and A. niger conidia (survival 30%) outlived the other species. The survival of the conidiaand spores species was only slightly poorer than that of thecorresponding laboratory controls. However, the Deinococcus radiodurans cells did not survive the desertexposure, because they are readily inactivated at relativehumidities between 40 and 80% which typically occurduring desert nights. Cellular monolayers of the dry sporesand conidia have in addition been exposed to the full sunlight for up to several hours. The solar fluences causing 63% loss in viability (F37-values) have been determined.These F37-values are compared with those determined atother global locations such as Punta Arenas (53°S), Key Largo (25°N) or Mainz (50°N) during the same season. Thesolar UVB radiation kills even the most resistantmicroorganisms within a few hours due to DNA damages. Thedata are also discussed with respect to possible similaritiesbetween the climatic conditions of the recent Atacama Desertand the deserts of early Mars.  相似文献   

18.
Martian surface microbial inhabitants would be challenged by a constant and unimpeded flux of UV radiation, and the study of analog model terrestrial environments may be of help to understand how such life forms could survive under this stressful condition. One of these environments is the Atacama Desert (Chile), a well-known Mars analog due to its extreme dryness and intense solar UV radiation. Here, we report the microbial diversity at five locations across this desert and the isolation of UVC-tolerant microbial strains found in these sites. Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA sequences obtained from these sites showed banding patterns that suggest distinct and complex microbial communities. Analysis of 16S rDNA sequences obtained from UV-tolerant strains isolated from these sites revealed species related to the Bacillus and Pseudomonas genera. Vegetative cells of one of these isolates, Bacillus S3.300-2, showed the highest UV tolerance profile (LD10?=?318 J?m2), tenfold higher than a wild-type strain of Escherichia coli. Thus, our results show that the Atacama Desert harbors a noteworthy microbial community that may be considered for future astrobiological-related research in terms of UV tolerance.  相似文献   

19.
20.
Understanding the regeneration niche of species may allow us to gain insight into how communities are structured. In deserts, the regeneration niche is usually related to spaces beneath shrubs where shade cast by shrubs creates microenvironments that benefit seedlings and where even small amounts of rain may favour germination and establishment. Shade and water may also interact with different types of soils. However, species may have different requirements for germination and seedling survival. We could expect that shrub species with different drought tolerances exhibit different responses to the combination of these factors. We ask if responses of dominant species of the Atacama Desert to abiotic factors (shade, water and soil type) are related to their drought tolerance, a topic not exhaustively explored in shrubs growing in true deserts. We conducted two factorial experiments. The first one was designed to evaluate how shade (microhabitat) in combination with water may affect germination (emergence) and early survival. In the second experiment, we assessed the influence of shade in relation to soil type. Each species responded distinctively to the three variables under study, but in general, their emergence responses were more influenced by water (more water, greater emergence) than by microhabitat or soil type. Survival was influenced both by microhabitat and by water and was higher under shade and abundant water. Soil type affected only one of our species in terms of emergence. Species responses in general depended on their tolerance to stress. In one species, there was indication of a seed–seedling conflict. Our results show similar species responses to environmental constraints but also more or less unique responses that are related to their tolerance to drought and which may ultimately permit species coexistence. We found that shade may not be important for germination but may be crucial for survival in dry years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号