首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allometric theory predicts that instantaneous mortality rates scale with body mass with a negative quarter power. Such a relationship would mean that the survival rate of one species is partly predictable from the survival rate of other species. We develop allometric regression models for annual adult survival of birds and mammals, using data collected from the literature. These models conform to the predictions of the allometric theory; the value of negative one-quarter for the scaling parameter is within the 95% credible interval, which is [-0.31, -0.10] for birds and [-0.35, -0.15] for mammals. The predictions are very well supported when evaluated using an independent set of data. The regression models can be used to provide objective and informative Bayesian priors for annual adult survival rates of birds and mammals or to act as a point of comparison in new studies.  相似文献   

2.
3.
The evolution of shell polymorphism in terrestrial snails is a classic textbook example of the effect of natural selection in which avian and mammalian predation represents an important selective force on gene frequency. However, many questions about predation remain unclear, especially in the case of mammals. We collected 2000 specimens from eight terrestrial gastropod species to investigate the predation pressure exerted by birds and mice on snails. We found evidence of avian and mammalian predation in 26.5% and 36.8% of the shells. Both birds and mammals were selective with respect to snail species, size and morphs. Birds preferred the brown-lipped banded snail Cepaea nemoralis (L.) and mice preferred the burgundy snail Helix pomatia L. Mice avoided pink mid-banded C. nemoralis and preferred brown mid-banded morphs, which were neglected by birds. In contrast to mice, birds chose larger individuals. Significant differences in their predatory pressure can influence the evolution and maintenance of shell size and polymorphism of shell colouration in snails.  相似文献   

4.
Metabolic rate is traditionally assumed to scale with body mass to the 3/4-power, but significant deviations from the '3/4-power law' have been observed for several different taxa of animals and plants, and for different physiological states. The recently proposed 'metabolic-level boundaries hypothesis' represents one of the attempts to explain this variation. It predicts that the power (log-log slope) of metabolic scaling relationships should vary between 2/3 and 1, in a systematic way with metabolic level. Here, this hypothesis is tested using data from birds and mammals. As predicted, in both of these independently evolved endothermic taxa, the scaling slope approaches 1 at the lowest and highest metabolic levels (as observed during torpor and strenuous exercise, respectively), whereas it is near 2/3 at intermediate resting and cold-induced metabolic levels. Remarkably, both taxa show similar, approximately U-shaped relationships between the scaling slope and the metabolic (activity) level. These predictable patterns strongly support the view that variation of the scaling slope is not merely noise obscuring the signal of a universal scaling law, but rather is the result of multiple physical constraints whose relative influence depends on the metabolic state of the organisms being analysed.  相似文献   

5.
6.
Density-dependent dispersal in birds and mammals   总被引:4,自引:0,他引:4  
Erik Matthysen 《Ecography》2005,28(3):403-416
Density‐dependent dispersal can be caused by various mechanisms, from competition inducing individuals to emigrate (positive density‐dependence) to social crowding effects impeding free movement (negative density‐dependence). Various spatial population models have incorporated positively density‐dependent dispersal algorithms, and recent theoretical models have explored the conditions for density‐dependent dispersal (DD) to evolve. However, while the existence of DD is well documented in some taxa such as insects, there is no clear picture on its generality in vertebrates. Here I review the available empirical data on DD in birds and mammals, focusing mainly on variation in dispersal between years and on experimental density manipulations. Surprisingly few studies have explicitly focused on DD, and interpretation of the available data is often hampered by differences in approach, small sample sizes and/or statistical shortcomings. Positive DD was reported in 50 and 33% of the selected mammal and bird studies, respectively, while two studies on mammals (out of eight) reported negative DD. Among bird studies, DD was more often reported for emigration rates or long‐distance recoveries than for average distances within finite study areas. Experimental studies manipulating densities (mainly on mammals) have consistently generated positive DD, typically showing reduced emigration in response to partial population removal. Studies that examined dispersal in relation to seasonal changes in density (small mammals only) have more often reported negative DD. Studies that compared dispersal between sites differing in density, also show a mixture of positive and negative DD. This suggests that dispersal changes in a more complex way with seasonal and spatial density variation than with annual densities, and/or that these results are confounded by other factors differing between seasons and sites, such as habitat quality. I conclude that both correlational and experimental studies support the existence of positive, rather than negative, density‐dependent dispersal in birds and mammals.  相似文献   

7.
Thermoregulation in homoiotherms is achieved by physiological and behavioural adjustments which involve the musculature, skin, sensory capacities, hypothalamus and endocrine glands. Under thermal stress animals exhibit anorexia, body extension, gasping, languor, lethargy, excessive drinking, bathing, decreased locomotor activities, group dispersion, and shade seeking. When exposed to cold, animals show body flexure, huddling, hyperphagia, extra locomotor activities, depressed respiration and nest building. Species and breed differences in the behavioural adjustments to unfavourable climates are related to habitat, morphological characteristics of body covering, degree of physiological adaptability, degree of physiological immaturity at birth or hatching, and the number of young.  相似文献   

8.
Summary We report the isolation and nucleotide sequence determination of clones derived from five ZFY-related zinc-finger genes from birds and mammals. These sequences are analyzed with reference to the previously published human genes, ZFX and ZFY, and mouse genes, Zfx, Zfa, Zfy-1, and Zfy-2. The analysis indicates that ZFY-related genes are highly conserved in birds and mammals, and that the rate of nucleotide substitution in the Y-linked genes is not as high as predicted. However, the mouse Zfy-1 and Zfy-2 genes are markedly divergent members of the ZFY gene family; we suggest this relates to X-inactivation of the mouse gene Zfx.  相似文献   

9.
10.
Many elements of mammalian and avian thermoregulatory mechanisms are present in reptiles, and the changes involved in the transition to endothermy are more quantitative than qualitative. Drawing on our experience with reptiles and echidnas, we comment on that transition and on current theories about how it occurred. The theories divide into two categories, depending on whether selection pressures operated directly or indirectly on mechanisms producing heat. Both categories of theories focus on explaining the evolution of homeothermic endothermy but ignore heterothermy. However, noting that hibernation and torpor are almost certainly plesiomorphic (=ancestral, primitive), and that heterothermy is very common among endotherms, we propose that homeothermic endothermy evolved via heterothermy, with the earliest protoendotherms being facultatively endothermic and retaining their ectothermic capacity for "constitutional eurythermy." Thus, unlike current models for the evolution of endothermy that assume that hibernation and torpor are specialisations arising from homeothermic ancestry, and therefore irrelevant, we consider that they are central. We note the sophistication of thermoregulatory behavior and control in reptiles, including precise control over conductance, and argue that brooding endothermy seen in some otherwise ectothermic Boidae suggests an incipient capacity for facultative endothermy in reptiles. We suggest that the earliest insulation in protoendotherms may have been internal, arising from redistribution of the fat bodies that are typical of reptiles. We note that short-beaked echidnas provide a useful living model of what an (advanced) protoendotherm may have been like. Echidnas have the advantages of endothermy, including the capacity for homeothermic endothermy during incubation, but are very relaxed in their thermoregulatory precision and minimise energetic costs by using ectothermy facultatively when entering short- or long-term torpor. They also have a substantial layer of internal dorsal insulation. We favor theories about the evolution of endothermy that invoke direct selection for the benefits conferred by warmth, such as expanding daily activity into the night, higher capacities for sustained activity, higher digestion rates, climatic range expansion, and, not unrelated, control over incubation temperature and the benefits for parental care. We present an indicative, stepwise schema in which observed patterns of body temperature are a consequence of selection pressures, the underlying mechanisms, and energy optimization, and in which homeothermy results when it is energetically desirable rather than as the logical endpoint.  相似文献   

11.
Pumping power as delivered by the heart is generated by the cells in the myocardial wall. In the present model study global left-ventricular pump function as expressed in terms of cavity pressure and volume is related to local wall tissue function as expressed in terms of myocardial fiber stress and strain. On the basis of earlier studies in our laboratory, it may be concluded that in the normal left ventricle muscle fiber stress and strain are homogeneously distributed. So, fiber stress and strain may be approximated by single values, being valid for the whole wall. When assuming rotational symmetry and homogeneity of mechanical load in the wall, the dimensionless ratio of muscle fiber stress (sigma f) to left-ventricular pressure (Plv) appears to depend mainly on the dimensionless ratio of cavity volume (Vlv) to wall volume (Vw) and is quite independent of other geometric parameters. A good (+/- 10%) and simple approximation of this relation is sigma f/Plv = 1 + 3 Vlv/Vw. Natural fiber strain is defined by ef = In (lf/lf,ref), where lf,ref indicates fiber length (lf) in a reference situation. Using the principle of conservation of energy for a change in ef, it holds delta ef = (1/3)delta In (1 + 3Vlv/Vw).  相似文献   

12.
13.
Clavicles (collar bones) are variably present in mammals. Furculae (wishbones)--which may or may not be homologous with clavicles--are variably present and/or fused in birds and present in theropod dinosaurs. In this overview the development of clavicles and furculae is discussed with special attention to modes of skeletogenesis (whether intramembranous or endochondral), numbers of centres of ossification (one in chick furculae; two in murine clavicles), presence of cartilage (primary in clavicles, secondary in furculae), evidence from experimental analysis and from mutations for dependence of both clavicular and furcular growth on mechanical stimulation, and syndromes and mutations affecting clavicular development leading to both under and over development. J. Exp. Zool. 289:153-161, 2001.  相似文献   

14.
We developed a simple method that uses skulls to estimate the diameter, and hence the mass, of birds'' eyes. Allometric analysis demonstrated that, within five orders (parrots, pigeons, petrels, raptors and owls) and across 104 families of flying birds, eye mass is proportional to (body mass)0.68 over a range of body masses (6 g to 11.3 kg). As expected from their habits and visual ecology, raptors and owls have enlarged eyes, with masses 1.4 and 2.2 times greater than average birds of the same weight. Taking existing relationships for flight speed on body mass, we find that resolution increases close to (flight speed)1.333. Consequently, large birds resolve objects at a longer time to contact than small birds. Eye radius and skull size co-vary in strict proportion, suggesting common physiological, aerodynamic and mechanical constraints. Because eye mass scales close to brain mass, metabolic rate and information processing could also be limiting, but the precise factors determining the scaling of eye to body have not been identified.  相似文献   

15.
Embryo development and ageing in birds and mammals   总被引:4,自引:0,他引:4  
The rate of ageing is a genetically influenced feature of an individual's life history that responds to selection on lifespan. Various costs presumably constrain the evolution of prolonged life, but these have not been well characterized and their general nature is unclear. The analyses presented here demonstrate a correlation among birds and mammals between rates of embryonic growth and ageing-related mortality, which are quantified by the exponents of fitted power functions. This relationship suggests that rapid early development leads to accelerated ageing, presumably by influencing some aspect of the quality of the adult individual. Although the mechanisms linking embryo growth rate and ageing are not known, a simple model of life-history optimization shows that the benefits of longer life can be balanced by connected costs of extended development.  相似文献   

16.
A wide spectrum of cyclic functions in terrestrial mammals of different size, from the 3-gram shrew to the 3-ton elephant, yields an allometric exponent around 0.25, which is correlated--as a kind of common denominator--with the specific metabolic rate. Furthermore, the applicability of these empirical findings could be extrapolated to chronological events in the sub-cellular realm. On the other hand, the succession of growth periods (T98%) until sexual maturity is reached also follows the 1/4 power rule. By means of Verhulst's logistic equation, it has been possible to simulate three different biological conditions, which means that by modifying the numerical value of only one parameter, revertible physiological and pathological states can be obtained, as for instance isostasis, homeostasis and heterostasis.  相似文献   

17.
Northern environments present ecological and physiological problemsfor homeotherms that require adaptations to cope with severeand less predictable physical factors while at the same timecontinuing to have to cope with the biological ones, such ascompetition and predation. The stress axis plays a central rolein these adaptations and I discuss the range of solutions thatbirds and mammals have evolved. The stress response in theseanimals is not static when a challenge occurs, but may be modulateddepending on the biological function during the annual cycle(breeding versus nonbreeding), either under-responding to permitreproduction (some song birds) or responding vigorously, yetnot having this compromise reproduction (Arctic ground squirrels).Both may trade off survival for reproduction. In contrast, thesnowshoe hare shows the expected stress response to chronichigh predation risk over 2–3 years: body resources aregeared to survival and reproduction is inhibited. Two long term,persistent, and pervasive changes will confront northern birdsand mammals in the 21st century: global change and persistentorganochlorine pollutants (POPs). These may result in eitheradaptations or shifts in distribution and abundance. For theformer, latitudinal variation in the stress axis may help songbirds respond rapidly; population variation in the stress axisresponse is unknown in northern mammals and relatively sedentarymammals may be unable to shift their distribution rapidly toadjust major climate shifts. For the latter, the few POPs studiesthat have examined the stress axis indicate marked negativeeffects.  相似文献   

18.
An expression for the energy of motion of the wall of the left ventricle is developed. A cylinderical model is assumed for the left ventricle, and symmetry is used to produce the problem to a two-dimensional problem. Result obtained indicate that consideration of the energy of motion can be useful in problems of clinical diagnosis. Some correlation between previously published experimental results is also made with the equations derived in this paper.  相似文献   

19.
FoxP2 is the first identified gene that is specifically involved in speech and language development in humans. Population genetic studies of FoxP2 revealed a selective sweep in recent human history associated with two amino acid substitutions in exon 7. Avian song learning and human language acquisition share many behavioral and neurological similarities. To determine whether FoxP2 plays a similar role in song-learning birds, we sequenced exon 7 of FoxP2 in multiple song-learning and nonlearning birds. We show extreme conservation of FoxP2 sequences in birds, including unusually low rates of synonymous substitutions. However, no amino acid substitutions are shared between the song-learning birds and humans. Furthermore, sequences from vocal-learning whales, dolphins, and bats do not share the human-unique substitutions. While FoxP2 appears to be under strong functional constraints in mammals and birds, we find no evidence for its role during the evolution of vocal learning in nonhuman animals as in humans.  相似文献   

20.
1. Two data sets for standard energy metabolism (351 and 320 species, respectively) and one for maximal lifespan (494 species) in mammals have been assembled from the literature. 2. In addition smaller data sets of active (field) energy metabolism in mammals (36 species) and in birds (25 species) have been drawn on. 3. The products of the respective regression parameters as well as the products of energy metabolism and maximal lifespan in individual species have been computed in order to estimate lifetime energy metabolism in mammals generally and in various mammalian orders. 4. It is found that lifetime energy budgets in mammals generally, whether standard or active, very systematically with body mass with slopes between 0.87 and 0.93, significantly different from unity (P less than 0.001 or P less than 0.01). 5. In birds, lifetime energy budgets, whether standard or active, vary with slopes of 0.94 +/- 0.05 and 0.88 +/- 0.09, which are not significantly different from unity (P greater than 0.1). 6. In carnivores, artiodactyls, primates and bats the slopes for lifetime standard as well as lifetime active energy budgets are not significantly different from one in any of the investigated data sets. 7. In rodents the lifetime standard energy budgets have slope significantly different from one; in marsupials one data set for lifetime standard and the one for lifetime active energy budget lead to slopes significantly different from one. 8. It is concluded from this analysis that current data do not support the hypothesis that lifetime energy budgets, whether standard or active, vary as the first power of body mass in mammals generally.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号