首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The demonstration that double-stranded (ds) RNA inhibits protein synthesis in cell-free systems prepared from interferon-treated cells, lead to the discovery of the two interferon-induced, dsRNA-dependent enzymes: the serine/threonine protein kinase that is referred to as PKR and the 2′,5′-oligoadenylate synthetase (2′,5′-OAS), which converts ATP to 2′,5′-linked oligoadenylates with the unusual 2′-5′ instead of 3′-5′ phosphodiesterase bond. We raised monoclonal and polyclonal antibodies against human PKR and the two larger forms of the 2′,5′-OAS. Such specific antibodies proved to be indispensable for the detailed characterization of these enzyme and the cloning of cDNAs corresponding to the human PKR and the 69–71 and 100 kDa forms of the 2′,5′-OAS. When activated by dsRNA, PKR becomes autophosphorylated and catalyzes phosphorylation of the protein synthesis initiation factor eIF2, whereas the 2′-5′OAS forms 2′,5′-oligoadenylates that activate the latent endoribonuclease, the RNAse L. By inhibiting initiation of protein synthesis or by degrading RNA, these enzymes play key roles in two independent pathways that regulate overall protein synthesis and the mechanism of the antiviral action of interferon. In addition, these enzymes are now shown to regulate other cellular events, such as gene induction, normal control of cell growth, differentiation and apoptosis.  相似文献   

2.
3.
细胞核是真核细胞中最大的细胞器.高等动物细胞核主要由双层核膜、核孔复合体、核纤层、染色质和核仁等组成.在细胞有丝分裂期,细胞核呈现去装配和再装配等动态变化.在细胞分裂间期,核膜、核孔复合体和核纤层构成细胞核的外周结构,为遗传物质在染色质和核仁中的代谢提供了一个相对稳定的环境,同时调控细胞核内外的物质转运,在细胞增殖、分化、个体发育和细胞衰老等许多方面发挥着重要作用.本文主要对高等动物细胞核膜和核纤层结构、功能及动态变化调控机制等方面的研究进展进行简要综述.  相似文献   

4.
The nuclear envelope is a double lipid bilayer that physically separates the functions of the nucleus and the cytoplasm of eukaryotic cells. Regulated transport of molecules between the nucleus and the cytoplasm is essential for normal cell metabolism and is mediated by large protein complexes, termed nuclear pore complexes (NPCs), which span the inner and outer membranes of the nuclear envelope. Significant progress has been made in the past 10 years in identifying the protein composition of NPCs and the basic molecular mechanisms by which these complexes facilitate the selective exchange of molecules between the nucleus and the cytoplasm. However, many fundamentally important questions about the functions of NPCs, the specific functions of individual NPC-associated proteins, and the assembly and disassembly of NPCs, remain unanswered. This review describes approaches for isolating and characterizing nuclear envelopes and NPC-associated proteins from mammalian cells. It is anticipated that these procedures can be used as a starting point for further molecular and biochemical analysis of the mammalian nuclear envelope, NPCs, and NPC-associated proteins.  相似文献   

5.
The NPC is the portal for the exchange of proteins, mRNA, and ions between nucleus and cytoplasm. Many small molecules (<10 kDa) permeate the nucleus by simple diffusion through the pore, but molecules larger than 70 kDa require ATP and a nuclear localization sequence for their transport. In isolated Xenopus oocyte nuclei, diffusion of intermediate-sized molecules appears to be regulated by the NPC, dependent upon [Ca2+] in the nuclear envelope. We have applied real-time imaging and fluorescence recovery after photobleaching to examine the nuclear pore permeability of 27-kDa EGFP in single intact cells. We found that EGFP diffused bidirectionally via the NPC across the nuclear envelope. Although diffusion is slowed ~100-fold at the nuclear envelope boundary compared to diffusion within the nucleus or cytoplasm, this delay is expected for the reduced cross-sectional area of the NPCs. We found no evidence for significant nuclear pore gating or block of EGFP diffusion by depletion of perinuclear Ca2+ stores, as assayed by a nuclear cisterna-targeted Ca2+ indicator. We also found that EGFP exchange was not altered significantly during the cell cycle.  相似文献   

6.
The intracellular location of the adenovirus type 5 E1B 55-kilodalton (kDa) protein, particularly the question of whether it is associated with nuclear pore complexes, was examined. Fractionation of adenovirus type 5-infected HeLa cell nuclei by an established procedure (N. Dwyer and G. Blobel, J. Cell. Biol. 70:581-591, 1976) yielded one population of E1B 55-kDa protein molecules released by digestion of nuclei with RNase A and a second population recovered in the pore complex-lamina fraction. Free and E1B 55-kDa protein-bound forms of the E4 34-kDa protein (P. Sarnow, C. A. Sullivan, and A. J. Levine, Virology 120:387-394, 1982) were largely recovered in the pore complex-lamina fraction. Nevertheless, the association of E1B 55-kDa protein molecules with this nuclear envelope fraction did not depend on interaction of the E1B 55-kDa protein with the E4 34-kDa protein. Comparison of the immunofluorescence patterns observed with antibodies recognizing the E1B 55-kDa protein or cellular pore complex proteins and of the behavior of these viral and cellular proteins during in situ fractionation suggests that the E1B 55-kDa protein does not become intimately or stably associated with pore complexes in adenovirus-infected cells.  相似文献   

7.
Structural organization and function of nuclear envelope   总被引:1,自引:0,他引:1  
  相似文献   

8.
We demonstrated previously that 69- and 82-kDa human choline acetyltransferase are localized predominantly to the cytoplasm and the nucleus, respectively. We have now identified a nuclear localization signal common to both forms of enzyme using confocal microscopy to study the subcellular compartmentalization of choline acetyltransferase tagged with green fluorescent protein in living HEK 293 cells. To identify functional nuclear localization and export signals, portions of full-length 69-kDa choline acetyltransferase were cloned into the vector peGFP-N1 and the cellular distribution patterns of the fusion proteins observed. Of the nine constructs studied, one yielded a protein with nuclear localization and another produced a protein with cytoplasmic localization. Mutation of the critical amino acids in this novel putative nuclear localization signal in the 69- and 82-kDa enzymes demonstrated that it is functional in both proteins. Moreover, 69-kDa choline acetyltransferase but not the 82-kDa enzyme is transported out of the nucleus by the leptomycin B-sensitive Crm-1 export pathway. By using bikaryon cells expressing both 82-kDa choline acetyltransferase and the nuclear protein heterogeneous nuclear ribonucleoprotein with green and red fluorescent tags, respectively, we found that the 82-kDa enzyme does not shuttle out of the nucleus in measurable amounts. These data suggest that 69-kDa choline acetyltransferase is a nucleocytoplasmic shuttling protein with a predominantly cytoplasmic localization determined by a functional nuclear localization signal and unidentified putative nuclear export signal. For 82-kDa choline acetyltransferase, the presence of the unique amino-terminal nuclear localization signal plus the newly identified nuclear localization signal may be involved in a process leading to predominantly nuclear accumulation of this enzyme, or alternatively, the two nuclear localization signals may be sufficient to overcome the force(s) driving nuclear export.  相似文献   

9.
10.
Poliovirus genomic RNA replication, protein translation, and virion assembly are performed in the cytoplasm of host cells. However, this does not mean that there is no relationship between poliovirus infection and the cellular nucleus. In this study, recombinant fluorescence-tagged poliovirus 3CD and 3C' proteins were shown to be expressed mainly in the cytoplasm of Vero cells in the absence of other viral proteins. However, upon poliovirus infection, many of these proteins redistributed to the nucleus, as well as to the cytoplasm. A series of transfection experiments revealed that the poliovirus 2A(pro) was responsible for the same redistribution of 3CD and 3C' proteins to the nucleus. Furthermore, a mutant 2A(pro) protein lacking protease activity abrogated this effect. The poliovirus 2A(pro) protein was also found to co-localize with the Nup153 protein, a component of the nuclear pore complexes on the nuclear envelope. These data provide further evidence that there are intrinsic interactions between poliovirus proteins and the cell nucleus, despite that many processes in the poliovirus replication cycle occur in the cytoplasm.  相似文献   

11.
An isocratic reversed-phase LC-MS method for measuring concentrations of 5-chloro-2′,3′-dideoxy-3′-fluorouridine (935U83; I) directly and its 5′-glucuronide metabolite (5-chloro-2′,3′-dideoxy-5′-O-β- -glucopyranuronosyl-3′-fluorouridine) indirectly in human plasma was developed, validated, and applied to a Phase I clinical study. The pyrimidine nucleoside, I, was extracted from human plasma by using anionic solid-phase extraction. The concentration of the glucuronide conjugate was determined from the difference between the molar concentration of I in a sample hydrolyzed with β-glucuronidase and the nonhydrolyzed sample. Recovery of I from human plasma averaged 90%. The bias of the assay for I ranged from −5.5 to 7.1% during the validation and from −6.0 to 1.4% during application of the assay to the Phase I single-dose escalation study. The intra- and inter-day precision was less than 8% for I and its glucuronide conjugate. The lower and upper limits of quantitation for a 50-μl sample were 4 ng/ml and 3000 ng/ml, respectively. No significant endogenous interferences were noted in human plasma obtained from drug-free volunteers nor from predose samples of HIV-infected patients.  相似文献   

12.
Bidirectional transport of molecules between nucleus and cytoplasm through the nuclear pore complexes (NPCs) spanning the nuclear envelope plays a fundamental role in cell function and metabolism. Nuclear import of macromolecules is a two-step process involving initial recognition of targeting signals, docking to the pore and energy-driven translocation. ATP depletion inhibits the translocation step. The mechanism of translocation itself and the conformational changes of the NPC components that occur during macromolecular transport, are still unclear. The present study investigates the effect of ATP on nuclear pore conformation in isolated nuclear envelopes from Xenopus laevis oocytes using the atomic force microscope. All experiments were conducted in a saline solution mimicking the cytosol using unfixed nuclear envelopes. ATP (1 mm) was added during the scanning procedure and the resultant conformational changes of the NPCs were directly monitored. Images of the same nuclear pores recorded before and during ATP exposure revealed dramatic conformational changes of NPCs subsequent to the addition of ATP. The height of the pores protruding from the cytoplasmic surface of the nuclear envelope visibly increased while the diameter of the pore opening decreased. The observed changes occurred within minutes and were transient. The slow-hydrolyzing ATP analogue, ATP-γ-S, in equimolar concentrations did not exert any effects. The ATP-induced shape change could represent a nuclear pore ``contraction.' Received: 10 February 1997/Revised: 10 February 1998  相似文献   

13.
Nuclear pore complexes are constitutive structures of the nuclear envelope in eukaryotic cells and represent the sites where transport of molecules between nucleus and cytoplasm takes place. However, pore complexes of similar structure, but with largely unknown functional properties, are long known to occur also in certain cytoplasmic cisternae that have been termed annulate lamellae (AL). To analyze the capability of the AL pore complex to interact with the soluble mediators of nuclear protein import and their karyophilic protein substrates, we have performed a microinjection study in stage VI oocytes ofXenopus laevis.In these cells AL are especially abundant and can easily be identified by light and electron microscopy. Following injection into the cytoplasm, fluorochrome-labeled mediators of two different nuclear import pathways, importin β and transportin, not only associate with the nuclear envelope but also with AL. Likewise, nuclear localization signals (NLS) of the basic and M9 type, but not nuclear export signals, confer targeting and transient binding of fluorochrome-labeled proteins to cytoplasmic AL. Mutation or deletion of the NLS signals prevents these interactions. Furthermore, binding to AL is abolished by dominant negative inhibitors of nuclear protein import. Microinjections of gold-coupled NLS-bearing proteins reveal specific gold decoration at distinct sites within the AL pore complex. These include such at the peripheral pore complex-attached fibrils and at the central “transporter” and closely resemble those of “transport intermediates” found in electron microscopic studies of the nuclear pore complex (NPC). These data demonstrate that AL can represent distinct sites within the cytoplasm of transient accumulation of nuclear proteins and that the AL pore complex shares functional binding properties with the NPC.  相似文献   

14.
Diadenosine 5′,5′”-P1,P4-tetraphosphate (Ap4A) cleaving enzymes are assumed to regulate intracellular levels of Ap4A, a compound known to affect cell proliferation and stress responses. From plants an Ap4A hydrolase was recently purified using tomato cells grown in suspension. It was partially sequenced and a peptide antibody was prepared (Feussner et al., 1996). Using this polyclonal monospecific antibody, an abundant nuclear location of Ap4A hydrolase in 4-day-old cells of atomato cell suspension culture is demonstrated here by means of immunocytochemical techniques using FITC (fluorescein-5-isothiocyanate) labeled secondary antibodies. The microscopic analysis of the occurrence of Ap4A hydrolase performed for different stages of the cell cycle visualized by parallel DAPI (4,6-diamidino-2-phenylindole) staining revealed that the protein accumulates within nuclei of cells in the interphase, but is absent in the nucleus as well as cytoplasm during all stages of mitosis. This first intracellular localization of an Ap4A degrading enzyme within the nucleus and its pattern of appearance during the cell cycle is discussed in relation to the suggested role of Ap4A in triggering DNA synthesis and cell proliferation.  相似文献   

15.
The mammalian NE (nuclear envelope), which separates the nucleus from the cytoplasm, is a complex structure composed of nuclear pore complexes, the outer and inner nuclear membranes, the perinuclear space and the nuclear lamina (A- and B-type lamins). The NE is completely disassembled and reassembled at each cell division. In the present paper, we review recent advances in the understanding of the mechanisms implicated in the transport of inner nuclear membrane and nuclear lamina proteins from the endoplasmic reticulum to the nucleus in interphase cells and mitosis, with special attention to A-type lamins.  相似文献   

16.
Antonin W  Ellenberg J  Dultz E 《FEBS letters》2008,582(14):2004-2016
In eukaryotes, all macromolecules traffic between the nucleus and the cytoplasm through nuclear pore complexes (NPCs), which are among the largest supramolecular assemblies in cells. Although their composition in yeast and metazoa is well characterized, understanding how NPCs are assembled and form the pore through the double membrane of the nuclear envelope and how both processes are controlled still remains a challenge. Here, we summarize what is known about the biogenesis of NPCs throughout the cell cycle with special focus on the membrane reorganization and the regulation that go along with NPC assembly.  相似文献   

17.
18.
In eukaryotic cells the nucleus and its contents are separated from the cytoplasm by the nuclear envelope. Macromolecules, as well as smaller molecules and ions, can cross the nuclear envelope through the nuclear pore complex. Molecules greater than approx. 60 kDa and containing a nuclear localization signal are actively transported across the nuclear membranes, but there has been little evidence for regulatory mechanisms for smaller molecules and ions. Recently, diffusion across the nuclear envelope has been observed to be regulated by nuclear cisternal Ca2+ concentrations. Following depletion of Ca2+ from the nuclear store by inositol 1,4,5-trisphosphate or Ca2+ chelators, a fluorescent 10 kDa marker molecule was no longer able to enter the nucleus. Distinct conformational states of the nuclear pore complexes depended on the Ca2+ filling state of the nuclear envelope, supporting the assumption that a switch in the conformation of the nuclear pore complex may control the transport of intermediate-sized molecules across the nuclear envelope. Thus nuclear Ca2+ stores may regulate the conformational state of the nuclear pore complex, and thereby passive diffusion of molecules between the cytosol and the nucleoplasm. The physiological significance of this finding is currently unknown.  相似文献   

19.
Active genes at the nuclear pore complex   总被引:2,自引:0,他引:2  
The nucleus is spatially and functionally organized and its architecture is now seen as a key contributor to genome functions. A central component of this architecture is the nuclear envelope, which is studded with nuclear pore complexes that serve as gateways for communication between the nucleoplasm and cytoplasm. Although the nuclear periphery has traditionally been described as a repressive compartment and repository for gene-poor chromosome regions, several recent studies in yeast have demonstrated that repressive and activating domains can both be positioned at the periphery of the nucleus. Moreover, association with the nuclear envelope favors the expression of particular genes, demonstrating that nuclear organization can play an active role in gene regulation.  相似文献   

20.
To investigate the extent to which the electron-opaque pore material can regulate nucleocytoplasmic exchanges which occur through the nuclear annuli, experiments were performed in which polyvinylpyrrolidone (PVP)-coated colloidal gold particles (25 to 170 A in diameter) were microinjected into the cytoplasm of amebas (Amoeba proteus). The cells were fixed at various times after injection and examined with the electron microscope in order to determine the location of the gold particles. High concentrations of gold were found associated with the pore material at specific points adjacent to and within the pores. It is tentatively suggested that such specific accumulations could be a means of selecting substances from the cytoplasm for transport through the pores. Particles were also scattered throughout the ground cytoplasm and nucleoplasm. A comparison of the diameters of particles located in these two regions showed that the ability of materials to penetrate the nuclear envelope is a function of their size. It was estimated that the maximum size of the particles able to enter the nucleus is approximately 125 to 145 A indiameter. The regulation of exchanges with regard to particle size is thought to be dependent on the specific organization of the electron-opaque pore material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号