首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The citrate carrier from maize (Zea mays) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and hydroxyapatite/celite in the presence of cardiolipin. SDS-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 31 kD. When reconstituted into liposomes, the citrate carrier catalyzed a pyridoxal 5'-P-sensitive citrate/citrate exchange. It was purified 224-fold with a recovery of 50% and a protein yield of 0.22% with respect to the mitochondrial extract. In the reconstituted system the purified citrate carrier catalyzed a first-order reaction of citrate/citrate (0.065 min-1) or citrate/malate exchange (0.075 min-1). Among the various substrates and inhibitors tested, the reconstituted protein transported citrate, cis-aconitate, isocitrate, L-malate, succinate, malonate, glutarate, alpha-ketoglutarate, oxaloacetate, and alpha-ketoadipate and was inhibited by pyridoxal 5'-P, phenylisothiocyanate, mersalyl, and p-hydroxymercuribenzoate (but not N-ethylmaleimide), 1,2, 3-benzentricarboxylate, benzylmalonate, and butylmalonate. The activation energy of the citrate/citrate exchange was 66.5 kJ/mol between 10 degrees C and 35 degrees C; the half-saturation constant (Km) for citrate was 0.65 +/- 0.05 mM and the maximal rate (Vmax) of the citrate/citrate exchange was 13.0 +/- 1.0 micromol min-1 mg-1 protein at 25 degrees C.  相似文献   

2.
The tricarboxylate (or citrate) carrier was purified from eel liver mitochondria and functionally reconstituted into liposomes. Incubation of the proteoliposomes with various sulfhydryl reagents led to inhibition of the reconstituted citrate transport activity. Preincubation of the proteoliposomes with reversible SH reagents, such as mercurials and methanethiosulfonates, protected the eel liver tricarboxylate carrier against inactivation by the irreversible reagent N-(1-pyrenyl)maleimide (PM). Citrate and L-malate, two substrates of the tricarboxylate carrier, protected the protein against inactivation by sulfhydryl reagents and decreased the fluorescent PM bound to the purified protein. These results suggest that the eel liver tricarboxylate carrier requires a single population of free cysteine(s) in order to manifest catalytic activity. The reactive cysteine(s) is most probably located at or near the substrate binding site of the carrier protein.  相似文献   

3.
The effect of anthracycline antibiotics on the activity of the partially purified and reconstituted tricarboxylate carrier system of the rat liver mitochondria was studied. It was found that the citrate/citrate exchange activity is inhibited by Br-daunomycin and with less potency by doxorubicin, daunomycin, epirubicin and idarubicin. The inhibition of the citrate transport activity is concentration and time-dependent. Cardiolipin protects against the inhibition by Br-daunomycin and the reconstituted citrate transport activity depends upon the ratio of cardiolipin/Br-daunomycin.  相似文献   

4.
The tricarboxylate carrier from rat liver mitochondria was solubilized with Triton X-100 and purified by chromatography on hydroxyapatite and celite. SDS-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent Mr of 30,000. When reconstituted into liposomes, the tricarboxylate transport protein catalyzed a 1,2,3-benzenetricarboxylate-sensitive citrate/citrate exchange. We obtained a 1070-fold purification with respect to the mitochondrial extract, the recovery was 22% and the protein yield 0.02%. The properties of the reconstituted carrier, i.e., requirement for a counteranion, substrate specificity and inhibitor sensitivity, were similar to those of the tricarboxylate transport system as characterized in intact mitochondria.  相似文献   

5.
The effect of arginine-specific reagents on the activity of the partially purified and reconstituted tricarboxylate carrier of the inner mitochondrial membrane has been studied. It has been found that 1,2-cyclohexanedione, 2,3-butanedione, phenylglyoxal and phenylglyoxal derivatives inhibit the reconstituted citrate/citrate exchange activity. The inhibitory potency of the phenylglyoxal derivatives increases with increasing hydrophilic character of the molecule. Citrate protects the tricarboxylate carrier against inactivation caused by the arginine-specific reagents. Other tricarboxylates, which are not substrates of the carrier, have no protective effect. The results indicate that at least one essential arginine residue is located at the substrate-binding site of the tricarboxylate carrier and that the vicinity of the essential arginine(s) has a hydrophilic character.  相似文献   

6.
The tricarboxylate carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite/celite and reconstituted in phospholipid vesicles by removing the detergent using hydrophobic chromatography on Amberlite. Optimal transport activity was obtained by using a Triton X-114/phospholipid ratio of 0.8, 6% cardiolipin and 24 passages through a single Amberlite column. In the reconstituted system the incorporated tricarboxylate carrier catalyzed a first-order reaction of citrate/citrate or citrate/malate exchange. The activation energy of the exchange reaction was 70.1 kJ/mol. The rate of the exchange had a pH optimum between 7 and 8. The half-saturation constant was 0.13 mM for citrate and 0.76 mM for malate. All these properties were similar to those described for the tricarboxylate transport system in intact mitochondria. In proteoliposomes the maximum exchange rate at 25 degrees C reached 2000 mumols/min per g protein. This value was independent of the type of substrate present at the external or internal space of the liposomes (citrate or malate).  相似文献   

7.
The tricarboxylate carrier from rat liver mitochondria has been purified and reconstituted into phospholipid vesicles. Its activity has been characterized by both a radioactive citrate uptake assay and a coupled enzymatic assay. A Km of 40 microM and a Vmax of 1.56 mumol x min-1 x mg-1 have been determined for the carrier. Cholesterol levels of between 5-10% of total lipid content are shown to cause a decrease in carrier activity.  相似文献   

8.
1. The effect of biologically synthesized and purified fluorocitrate on the metabolism of tricarboxylate anions by isolated rat liver mitochondria was investigated, in relation to the claim by Eanes et al. (1972) that this fluoro compound inhibits the tricarboxylate carrier at concentrations at which it has little effect on the aconitate hydratase activity. 2. That the inhibitory action of fluorocitrate is at the level of the aconitate hydratase and not at the level of the tricarboxylate carrier is indicated by the following findings. Although the oxidation of citrate and cis-aconitate, but not that of isocitrate, was inhibited by fluorocitrate, the exchange of internal citrate for external citrate or l-malate was not. Had the tricarboxylate carrier been affected, these latter exchange reactions would have been inhibited. 3. By using aconitate hydratase solubilized from mitochondria it was found that with citrate as substrate the inhibition by fluorocitrate was partially competitive (K(i)=3.4x10(-8)m), whereas with cis-aconitate as substrate the inhibition was partially non-competitive (K(i)=3.0x10(-8)m).  相似文献   

9.
The kinetics of the transport of citrate by the tricarboxylate transport system located in the inner mitochondrial membrane was studied in proteoliposomes containing the purified carrier protein, in order to verify the previously hypothesized mechanism of uniport (J. Bioenerg. Biomembr. 35, 133–140, 2003) and achieve some information on the kinetic properties of the carrier transport system. For this purpose, a mathematical model has been elaborated and the experimental data were analyzed according to it. The results indicate that the data actually fit with the uniport model, and hence it is confirmed that the carrier has a single binding site for its substrates and can oscillate between the inside and outside form, in both the free and substrate-bound states. The rearrangement of the free form is slower than the bound form in both directions. The dissociation constants for the internal substrate are at least one order of magnitude higher than the one for external citrate. As a consequence of these last two points, the rate of citrate transport by the carrier is much higher when it operates in exchange with another substrate than when it operates in net uniport.  相似文献   

10.
The tricarboxylate carrier from eel liver mitochondria was purified by chromatography on hydroxyapatite and Matrix Gel Blue B and reconstituted into liposomes by removal of the detergent with Amberlite. Optimal transport activity was obtained by using a phospholipid concentration of 11.5 mg/ml, a Triton X-114/phospholipid ratio of 0.9, and ten passages through the same Amberlite column. The activity of the carrier was influenced by the phospholipid composition of the liposomes, being increased by cardiolipin and phosphatidylethanolamine and decreased by phosphatidylinositol. The reconstituted tricarboxylate carrier catalyzed a first-order reaction of citrate/citrate or citrate/malate exchange. The maximum transport rate of external [14C]citrate was 9.0 mmol/min per g of tricarboxylate carrier protein at 25°C and this value was virtually independent of the type of substrate present in the external or internal space of the liposomes. The half-saturation constant (K m) was 62 M for citrate and 541 M for malate. The activation energy of the citrate/citrate exchange reaction was 74 kJ/mol from 5 to 19°C and 31 kJ/mol from 19 to 35°C. The rate of the exchange had an external pH optimum of 8.  相似文献   

11.
12.
1. Kinetic and equilibrium parameters for the uptake of l-malate, succinate, citrate and alpha-oxoglutarate by fully functional mitochondria of Saccharomyces cerevisiae were determined. 2. The uptake of l-malate and succinate is mediated by a common carrier, and two other distinct carriers mediate the uptake of citrate and alpha-oxoglutarate. 3. The properties of the carrier systems for l-malate, succinate and citrate closely resemble those of mammalian mitochondria, but the alpha-oxoglutarate carrier differs from the mammalian system in minor respects. 4. The composition of the yeast mitochondria was extensively manipulated by (a) anaerobiosis, (b) catabolite repression, (c) inhibition of mitochondrial protein synthesis and (d) elimination of mitochondrial DNA by mutation. 5. The carrier systems for l-malate, succinate, citrate and alpha-oxoglutarate are essentially similar in the five different types of mitochondria. 6. It is concluded that all the protein components of the carrier systems for l-malate, succinate, citrate and alpha-oxoglutarate are coded by nuclear genes and synthesized extramitochondrially by cell-sap ribosomes.  相似文献   

13.
Yang JL  Zhang L  Li YY  You JF  Wu P  Zheng SJ 《Annals of botany》2006,97(4):579-584
BACKGROUND AND AIMS: Aluminium (Al) stimulates the efflux of citrate from apices of rice bean (Vigna umbellata) roots. This response is delayed at least 3 h when roots are exposed to 50 microm Al, indicating that some inducible processes leading to citrate efflux are involved. The physiological bases responsible for the delayed response were examined here. METHODS: The effects of several antagonists of anion channels and citrate carriers, and of the protein synthesis inhibitor, cycloheximide (CHM) on Al-stimulated citrate efflux and/or citrate content were examined by high-pressure liquid chromatography (HPLC) or an enzymatic method. KEY RESULTS: Both anion channel inhibitors and citrate carrier inhibitors can inhibit Al-stimulated citrate efflux, with anthracene-9-carboxylic acid (A-9-C, an anion channel inhibitor) and phenylisothiocyanate (PI, a citrate carrier inhibitor) the most effective inhibitors. A 6 h pulse of 50 microm Al induced a significant increase of citrate content in root apices and release of citrate. However, the increase in citrate content preceded the efflux. Furthermore, the release of citrate stimulated by the pulse treatment was inhibited by both A-9-C and PI, indicating the importance of the citrate carrier on the mitochondrial membrane and the anion channel on the plasma membrane for the Al-stimulated citrate efflux. CHM (20 microm) also significantly inhibited Al-stimulated citrate efflux, confirming that de novo protein synthesis is required for Al-stimulated citrate efflux. CONCLUSIONS: These results indicate that the activation of genes possibly encoding citrate transporters plays a critical role in Al-stimulated citrate efflux.  相似文献   

14.
Anion transporters in plant mitochondria   总被引:11,自引:9,他引:2       下载免费PDF全文
The swelling of potato (Solanum tuberosum L.) mitochondria in isosmotic ammonium salts of phosphate, chloride, malate, succinate, and citrate was investigated by measuring light scattering. Potato mitochondria swell spontaneously in ammonium phosphate, and this swelling can be inhibited in N-ethylmaleimide. They swell in ammonium malate or succinate only after the addition of inorganic phosphate and in ammonium citrate only after the addition of both phosphate and a dicarboxylic acid. Pentylmalonate inhibits swelling in ammonium citrate solutions by competing for dicarboxylate entry. The results indicate that potato mitochondria possess a phosphate-hydroxyl carrier, a dicarboxylate carrier, and a tricarboxylate carrier.  相似文献   

15.
1. Klebsiella aerogenes contains two different acyl carrier proteins, one specific for citrate lyase, the other for fatty acid synthetase. 2. The acyl carrier protein of fatty acid synthetase from K. aerogenes was isolated and compared with the corresponding protein from Escherichia coli and with the acyl carrier protein of citrate lyase from K. aerogenes. 3. As judged from prosthetic group compositions as well as amino acid and fingerprint analyses, the acyl carrier proteins of the two fatty acid synthetases are nearly identical but different from that of citrate lyase from K. aerogenes. 4. Therefore, the different prosthetic groups alone cannot be responsible for the different specificities of the acyl carrier proteins of fatty acid synthetase and citrate lyase in K. aerogenes. 5. The prosthetic group of citrate lyase, phosphoribosyl dephospho-CoA, apparently represents no incidental, phosphopantetheine-replacing aberration. The requirement of citrate lyase for the CoA-like prosthetic group may arise from the substrate requirement of both subunit enzymes of the enzyme complex.  相似文献   

16.
The mitochondrial tricarboxylate (citrate) carrier plays an important role in hepatic intermediary metabolism because, among other functions, it supplies the cytosol with acetyl units for fatty-acid synthesis. In this study, the effect of polyunsaturated fatty acids (PUFA, n-6) on the function of this mitochondrial transporter and on lipogenic enzyme activities was investigated by feeding rats for 4 weeks with a 15%-fat diet composed of high linoleic safflower oil. Citrate transport was strongly reduced in liver mitochondria isolated from PUFA-treated rats. A reduced transport activity was also observed when solubilized mitochondrial citrate carrier from PUFA-treated rats was reconstituted into liposomes. In the same animals, a decrease of cytosolic lipogenic enzyme activities was observed. These results indicate a coordinated modulation of citrate carrier and of lipogenic enzyme activities by PUFA feeding. Kinetic analysis of the carrier activity showed that only V(max) decreased, whereas K(m) was almost virtually unaffected. The PUFA-mediated effect is most likely due to the reduced mRNA level and lower content of the citrate carrier protein observed in the safflower oil-fed rats.  相似文献   

17.
Missense mutations of the human mitochondrial citrate carrier, encoded by the SLC25A1 gene, lead to an autosomal recessive neurometabolic disorder characterised by neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development, often resulting in early death. Here, we have measured the effect of all twelve known pathogenic mutations on the transport activity. The results show that nine mutations abolish transport of citrate completely, whereas the other three reduce the transport rate by > 70%, indicating that impaired citrate transport is the most likely primary cause of the disease. Some mutations may be detrimental to the structure of the carrier, whereas others may impair key functional elements, such as the substrate binding site and the salt bridge network on the matrix side of the carrier. To understand the consequences of impaired citrate transport on metabolism, the substrate specificity was also determined, showing that the human citrate carrier predominantly transports citrate, isocitrate, cis-aconitate, phosphoenolpyruvate and malate. Although D-2- and L-2 hydroxyglutaric aciduria is a metabolic hallmark of the disease, it is unlikely that the citrate carrier plays a significant role in the removal of hydroxyglutarate from the cytosol for oxidation to oxoglutarate in the mitochondrial matrix. In contrast, computer simulations of central metabolism predict that the export of citrate from the mitochondrion cannot be fully compensated by other pathways, restricting the cytosolic production of acetyl-CoA that is required for the synthesis of lipids, sterols, dolichols and ubiquinone, which in turn explains the severe disease phenotypes.  相似文献   

18.
The citrate carrier of Klebsiella pneumoniae fermenting this substrate has been solubilized from the bacterial membranes with Triton X-100. The transport function was reconstituted by incorporation of the carrier into proteoliposomes using a freeze-thaw sonication procedure. Citrate uptake into these proteoliposomes required the presence of Na+ ions on the outside; the amount of citrate accumulated increased as the external Na+ concentration increased from 0 to 100 mM. Proteoliposomes preloaded with citrate catalyzed citrate counterflow when added to external [14C] citrate. Sodium ions were required for counterflow activity. The kinetics of citrate uptake, counterflow, or efflux were not influenced by an inside negative membrane potential, and the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone was without effect on citrate uptake. The data therefore suggest an electroneutral Na(+)-citrate symport mechanism for the transport of this tricarboxylic acid into K. pneumoniae.  相似文献   

19.
The Na+-dependent citrate carrier of Klebsiella pneumoniae (CitS) is a member of the 2-hydroxycarboxylate transporter family. Within the highly conserved helix Vb region, Asn-185 of CitS was mutated to Val and Glu-194 was mutated to Gln. The wild-type and mutant proteins were synthesised in Escherichia coli DH5alpha or C43(DE3) as biotinylated or His-tagged CitS-fusions, respectively. The synthesis and purification procedure yielded 6.5 mg pure CitS per litre culture. The fusion proteins were characterised with E. coli cell suspensions or after reconstitution of the purified enzymes into proteoliposomes. The E194Q mutation had almost no effect on the kinetics of Na+ or citrate transport. In contrast, aberrant citrate transport kinetics were found for the N185V mutant. The apparent K(m) value for the citrate species H-citrate(2-) was increased about nine-fold, whereas the apparent Vmax value and the effect of Na+ on the transport kinetics were comparable to the wild-type. Asn-185 of CitS appears therefore to participate in the binding of H-citrate(2-).  相似文献   

20.
The mediated transport of citrate in Aerobacter aerogenes was studied. According to data obtained by examining the distribution of radioactive citrate at room temperature and at 0 C, a carrier system appears to be located on the membrane. The carrier system is inducible and very specific, not acting on the related compounds isocitrate and cis-aconitate. Induction required synthesis of both ribonucleic acid and protein as determined by starving auxotrophic mutants and by using specific inhibitors of protein synthesis. Citrate transport was inhibited by N-ethyl maleimide, dinitrofluorobenzene, and uranyl nitrate. A kinetic study of uranyl nitrate inhibition revealed that the inhibition of citrate transport was different from that of glucose penetration. Cyanide also discriminated citrate from glucose penetration inhibiting only the former. These last results suggested that energy is required for citrate penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号