首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the features of the inward-rectifier K channel Kir1.1 (ROMK) that underlie the saturation of currents through these channels as a function of permeant ion concentration. We compared values of maximal currents and apparent K(m) for three permeant ions: K(+), Rb(+), and NH(4)(+). Compared with K(+) (i(max) = 4.6 pA and K(m) = 10 mM at -100 mV), Rb(+) had a lower permeability, a lower i(max) (1.8 pA), and a higher K(m) (26 mM). For NH(4)(+), the permeability was reduced more with smaller changes in i(max) (3.7 pA) and K(m) (16 mM). We assessed the role of a site near the outer mouth of channel in the saturation process. This site could be occupied by either permeant ions or low-affinity blocking ions such as Na(+), Li(+), Mg(2+), and Ca(2+) with similar voltage dependence (apparent valence, 0.15-0.20). It prefers Mg(2+) over Ca(2+) and has a monovalent cation selectivity, based on the ability to displace Mg(2+), of K(+) > Li(+) ~ Na(+) > Rb(+) ~ NH(4)(+). Conversely, in the presence of Mg(2+), the K(m) for K(+) conductance was substantially increased. The ability of Mg(2+) to block the channels was reduced when four negatively charged amino acids in the extracellular domain of the channel were mutated to neutral residues. The apparent K(m) for K(+) conduction was unchanged by these mutations under control conditions but became sensitive to the presence of external negative charges when residual divalent cations were chelated with EDTA. The results suggest that a binding site in the outer mouth of the pore controls current saturation. Permeability is more affected by interactions with other sites within the selectivity filter. Most features of permeation (and block) could be simulated by a five-state kinetic model of ion movement through the channel.  相似文献   

2.
Low-affinity Na+ uptake in the halophyte Suaeda maritima   总被引:3,自引:0,他引:3       下载免费PDF全文
Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter-type transporter and pathway 2 by an AKT1-type channel.  相似文献   

3.
Stretch-activated channels (SACs) were investigated in myocytes isolated from the lateral oviduct in cricket Gryllus bimaculatus using the cell-attached or excised inside-out patch clamp technique. Application of both negative and positive pressure (10-100 cm H(2)O) into the patch pipettes induced the unitary channel current openings. The open probability (NPo) of the channel increased when negative pressure applied into the patch pipettes increased. The single channel conductance for this channel was approximately 20 pS with 140 mM Na(+), K(+), or Cs(+) in the patch pipettes and was approximately 13 pS with 100mM Ca(2+) or Ba(2+) in the patch pipettes. External application of Gd(3+), La(3+), Cd(2+) and Zn(2+)inhibited the channel with the IC(50) values of 14, 15, 28, and 18 microM respectively. Interestingly external application of TEA, a specific blocker of K(+) channel, also inhibited this channel with IC(50) value of 8.8mM. These results show for the first time the presence of stretch activated Ca(2+)-permeable nonselective cation channel in myocytes isolated from the cricket lateral oviduct. The physiological significance of this channel in oviposition behavior is discussed.  相似文献   

4.
Four glutamate residues residing at corresponding positions within the four conserved membrane-spanning repeats of L-type Ca(2+) channels are important structural determinants for the passage of Ca(2+) across the selectivity filter. Mutation of the critical glutamate in Repeat III in the a 1S subunit of the skeletal L-type channel (Ca(v)1.1) to lysine virtually eliminates passage of Ca(2+) during step depolarizations. In this study, we examined the ability of this mutant Ca(v)1.1 channel (SkEIIIK) to conduct inward Na(+) current. When 150 mM Na(+) was present as the sole monovalent cation in the bath solution, dysgenic (Ca(v)1.1 null) myotubes expressing SkEIIIK displayed slowly-activating, non-inactivating, nifedipine-sensitive inward currents with a reversal potential (45.6 ± 2.5 mV) near that expected for Na(+). Ca(2+) block of SkEIIIK-mediated Na(+) current was revealed by the substantial enhancement of Na(+) current amplitude after reduction of Ca(2+) in the external recording solution from 10 mM to near physiological 1 mM. Inward SkEIIIK-mediated currents were potentiated by either ±Bay K 8644 (10 mM) or 200-ms depolarizing prepulses to +90 mV. In contrast, outward monovalent currents were reduced by ±Bay K 8644 and were unaffected by strong depolarization, indicating a preferential potentiation of inward Na(+) currents through the mutant Ca(v)1.1 channel. Taken together, our results show that SkEIIIK functions as a non-inactivating, junctionally-targeted Na(+) channel when Na(+) is the sole monvalent cation present and urge caution when interpreting the impact of mutations designed to ablate Ca(2+) permeability mediated by Ca(v) channels on physiological processes that extend beyond channel gating and permeability.  相似文献   

5.
Mechanisms underlying the negative inotropic response to alpha-adrenoceptor stimulation in adult mouse ventricular myocardium were studied. In isolated ventricular tissue, phenylephrine (PE), in the presence of propranolol, decreased contractile force by approximately 40% of basal value. The negative inotropic response was similarly observed under low extracellular Ca(2+) concentration ([Ca(2+)](o)) conditions but was significantly smaller under high-[Ca(2+)](o) conditions and was not observed under low-[Na(+)](o) conditions. The negative inotropic response was not affected by nicardipine, ryanodine, ouabain, or dimethylamiloride (DMA), inhibitors of L-type Ca(2+) channel, Ca(2+) release channel, Na(+)-K(+) pump, or Na(+)/H(+) exchanger, respectively. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchanger, suppressed the negative inotropic response mediated by PE. PE reduced the magnitude of postrest contractions. PE caused a decrease in duration of the late plateau phase of action potential and a slight increase in resting membrane potential; time courses of these effects were similar to that of the negative inotropic effect. In whole cell voltage-clamped myocytes, PE increased the L-type Ca(2+) and Na(+)/Ca(2+) exchanger currents but had no effect on the inwardly rectifying K(+), transient outward K(+), or Na(+)-K(+)-pump currents. These results suggest that the sustained negative inotropic response to alpha-adrenoceptor stimulation of adult mouse ventricular myocardium is mediated by enhancement of Ca(2+) efflux through the Na(+)/Ca(2+) exchanger.  相似文献   

6.
Photosynthetic characteristics, leaf ionic content, and net fluxes of Na(+), K(+), and Cl(-) were studied in barley (Hordeum vulgare L) plants grown hydroponically at various Na/Ca ratios. Five weeks of moderate (50 mM) or high (100 mM) NaCl stress caused a significant decline in chlorophyll content, chlorophyll fluorescence characteristics, and stomatal conductance (g(s)) in plant leaves grown at low calcium level. Supplemental Ca(2+) enabled normal photochemical efficiency of PSII (F(v)/F(m) around 0.83), restored chlorophyll content to 80-90% of control, but had a much smaller (50% of control) effect on g(s). In experiments on excised leaves, not only Ca(2+), but also other divalent cations (in particular, Ba(2+) and Mg(2+)), significantly ameliorated the otherwise toxic effect of NaCl on leaf photochemistry, thus attributing potential targets for such amelioration to leaf tissues. To study the underlying ionic mechanisms of this process, the MIFE technique was used to measure the kinetics of net Na(+), K(+), and Cl(-) fluxes from salinized barley leaf mesophyll in response to physiological concentrations of Ca(2+), Ba(2+), Mg(2+), and Zn(2+). Addition of 20 mM Na(+) as NaCl or Na(2)SO(4) to the bath caused significant uptake of Na(+) and efflux of K(+). These effects were reversed by adding 1 mM divalent cations to the bath solution, with the relative efficiency Ba(2+)>Zn(2+)=Ca(2+)>Mg(2+). Effect of divalent cations on Na(+) efflux was transient, while their application caused a prolonged shift towards K(+) uptake. This suggests that, in addition to their known ability to block non-selective cation channels (NSCC) responsible for Na(+) entry, divalent cations also control the activity or gating properties of K(+) transporters at the mesophyll cell plasma membrane, thereby assisting in maintaining the high K/Na ratio required for optimal leaf photosynthesis.  相似文献   

7.
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface area-to-volume ratio. Myocytes loaded with the fluorescent Ca(2+)-sensitive dye Fura-2 elicited Ca(2+) transients, which were insensitive to ryanodine and thapsigargin, indicating the SR plays a small role in the regulation of contraction and relaxation in the turtle ventricle. Sarcolemmal Ca(2+) currents were measured using the perforated-patch voltage-clamp technique. Depolarizing voltage steps to 0 mV elicited an inward current that could be blocked by nifedipine, indicating the presence of Ca(2+) currents originating from L-type Ca(2+) channels (I(Ca)). The density of I(Ca) was 3.2 +/- 0.5 pA/pF, which led to an overall total Ca(2+) influx of 64.1 +/- 9.3 microM/l. NCX activity was measured as the Ni(+)-sensitive current at two concentrations of intracellular Na(+) (7 and 14 mM). Total Ca(2+) influx through the NCX during depolarizing voltage steps to 0 mV was 58.5 +/- 7.7 micromol/l and 26.7 +/- 3.2 micromol/l at 14 and 7 mM intracellular Na(+), respectively. In the absence of the SR and L-type Ca(2+) channels, the NCX is able to support myocyte contraction independently. Our results indicate turtle ventricular myocytes are primed for sarcolemmal Ca(2+) transport, and most of the Ca(2+) used for contraction originates from the L-type Ca(2+) channel.  相似文献   

8.
Two types of voltage-dependent Ca(2+) channels have been identified in heart: high (I(CaL)) and low (I(CaT)) voltage-activated Ca(2+) channels. In guinea pig ventricular myocytes, low voltage-activated inward current consists of I(CaT) and a tetrodotoxin (TTX)-sensitive I(Ca) component (I(Ca(TTX))). In this study, we reexamined the nature of low-threshold I(Ca) in dog atrium, as well as whether it is affected by Na(+) channel toxins. Ca(2+) currents were recorded using the whole-cell patch clamp technique. In the absence of external Na(+), a transient inward current activated near -50 mV, peaked at -30 mV, and reversed around +40 mV (HP = -90 mV). It was unaffected by 30 microM TTX or micromolar concentrations of external Na(+), but was inhibited by 50 microM Ni(2+) (by approximately 90%) or 5 microM mibefradil (by approximately 50%), consistent with the reported properties of I(CaT). Addition of 30 microM TTX in the presence of Ni(2+) increased the current approximately fourfold (41% of control), and shifted the dose-response curve of Ni(2+) block to the right (IC(50) from 7.6 to 30 microM). Saxitoxin (STX) at 1 microM abolished the current left in 50 microM Ni(2+). In the absence of Ni(2+), STX potently blocked I(CaT) (EC(50) = 185 nM) and modestly reduced I(CaL) (EC(50) = 1.6 microM). While TTX produced no direct effect on I(CaT) elicited by expression of hCa(V)3.1 and hCa(V)3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni(2+) (IC(50) increased to 550 microM Ni(2+) for Ca(V)3.1 and 15 microM Ni(2+) for Ca(V)3.2); in contrast, 30 microM TTX directly inhibited hCa(V)3.3-induced I(CaT) and the addition of 750 microM Ni(2+) to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni(2+) alone. 1 microM STX directly inhibited Ca(V)3.1-, Ca(V)3.2-, and Ca(V)3.3-mediated I(CaT) but did not enhance the ability of Ni(2+) to block these currents. These findings provide important new implications for our understanding of structure-function relationships of I(CaT) in heart, and further extend the hypothesis of a parallel evolution of Na(+) and Ca(2+) channels from an ancestor with common structural motifs.  相似文献   

9.
Ca(2+) influx through the L-type Ca(2+) channels is the primary pathway for triggering the Ca(2+) release from the sarcoplasmic reticulum (SR). However, several observations have shown that Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger current (I(Na-Ca)) could also trigger the Ca(2+) release. The aim of the present study was to quantitate the role of this alternative pathway of Ca(2+) influx using a mathematical model. In our model 20% of the fast sodium channels and the Na(+)-Ca(2+) exchanger molecules are located in the restricted subspace between the sarcolemma and the SR where triggering of the calcium-induced calcium release (CICR) takes place. After determining the strengths of the alternative triggers with simulated voltage-clamps in varied membrane voltages and resting [Na](i) values, we studied the CICR in simulated action potentials, where fast sodium channel current contributes [Na](i) of the subspace. In low initial [Na](i) the Ca(2+) influx via the L-type Ca(2+) channels is the major trigger for Ca(2+) release from the SR, and the Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger cannot trigger the CICR. However, depending on the initial [Na](i), the contribution of the Ca(2+) entry via the exchanger may account for 25% (at [Na](i) = 10 mM) to nearly 100% ([Na](i) = 30 mM) of the trigger Ca(2+). The shift of the main trigger from L-type calcium channels to the exchanger reduced the delay between the action potential upstroke and the intracellular calcium transient. This may contribute to the function of the myocyte in physiological situations where [Na](i) is elevated. These main results remain the same when using different estimates for the most crucial parameters in the modeling or different models for the exchanger.  相似文献   

10.
Insect olfactory receptor neurons (ORNs) grown in primary cultures were studied using the patch-clamp technique in both conventional and amphotericin B perforated whole-cell configurations under voltage-clamp conditions. After 10-24 days in vitro, ORNs had a mean resting potential of -62 mV and an average input resistance of 3.2 GOmega. Five different voltage-dependent ionic currents were isolated: one Na(+), one Ca(2+) and three K(+) currents. The Na(+) current (35-300 pA) activated between -50 and -30 mV and was sensitive to 1 microM tetrodotoxin (TTX). The sustained Ca(2+) current activated between -30 and -20 mV, reached a maximum amplitude at 0 mV (-4.5 +/- 6.0 pA) that increased when Ba(2+) was added to the bath and was blocked by 1 mM Co(2+). Total outward currents were composed of three K(+) currents: a Ca(2+)-activated K(+) current activated between -40 and -30 mV and reached a maximum amplitude at +40 mV (605 +/- 351 pA); a delayed-rectifier K(+) current activated between -30 and -10 mV, had a mean amplitude of 111 +/- 67 pA at +60 mV and was inhibited by 20 mM tetraethylammonium (TEA); and, finally, more than half of ORNs exhibited an A-like current strongly dependent on the holding potential and inhibited by 5 mM 4-aminopyridine (4-AP). Pheromone stimulation evoked inward current as measured by single channel recordings.  相似文献   

11.
Zhou W  Chung I  Liu Z  Goldin AL  Dong K 《Neuron》2004,42(1):101-112
BSC1, which was originally identified by its sequence similarity to voltage-gated Na(+) channels, encodes a functional voltage-gated cation channel whose properties differ significantly from Na(+) channels. BSC1 has slower kinetics of activation and inactivation than Na(+) channels, it is more selective for Ba(2+) than for Na(+), it is blocked by Cd(2+), and Na(+) currents through BSC1 are blocked by low concentrations of Ca(2+). All of these properties are more similar to voltage-gated Ca(2+) channels than to voltage-gated Na(+) channels. The selectivity for Ba(2+) is partially due to the presence of a glutamate in the pore-forming region of domain III, since replacing that residue with lysine (normally present in voltage-gated Na(+) channels) makes the channel more selective for Na(+). BSC1 appears to be the prototype of a novel family of invertebrate voltage-dependent cation channels with a close structural and evolutionary relationship to voltage-gated Na(+) and Ca(2+) channels.  相似文献   

12.
Excitation-contraction (E-C) coupling was investigated in rat hearts 6 wk after induction of myocardial infarction (MI) by ligation of the left coronary artery. Heart weight was increased by 74% and left ventricular end-diastolic pressure was 23 +/- 2 mmHg in MI compared with 8 +/- 2 mmHg in sham-operated controls (Sham, P < 0.001). Cell shortening was measured in voltage-clamped myocytes at 36 degrees C. In solutions where Cs(+) had been replaced by K(+), the voltage dependence of contraction was sigmoidal between -20 and +100 mV in Sham and MI cells. Verapamil (20 microM) blocked L-type Ca(2+) current and reduced contraction in Sham cells by approximately 50% (P < 0.01) but did not decrease contraction significantly in MI cells at test potentials above +10 mV. Verapamil-insensitive contractions were blocked by Ni(2+) (5 mM). Na(+)/Ca(2+) exchange current was doubled in MI compared with Sham cells at test potentials between -20 and +80 mV (P < 0.05), whereas mRNA and protein expression increased by 30-40%. Finally, voltage dependence of contraction was bell shaped in Na(+)-free solutions, but contraction was significantly increased in MI cells over a wider voltage range (P < 0.05). The insensitivity to Ca(2+) channel block in MI cells may result from an increased contribution of the Na(+)/Ca(+) exchanger to triggering of E-C coupling. These results suggest significant changes in E-C coupling in the hypertrophy and failure that develop in response to extensive MI.  相似文献   

13.
Microcirculatory vessel response to changes in pressure, known as the myogenic response, is a key component of a tissue's ability to regulate blood flow. Experimental studies have not clearly elucidated the mechanical signal in the vessel wall governing steady-state reduction in vessel diameter upon an increase in intraluminal pressure. In this study, a multiscale computational model is constructed from established models of vessel wall mechanics, vascular smooth muscle (VSM) force generation, and VSM Ca(2+) handling and electrophysiology to compare the plausibility of vessel wall stress or strain as an effective mechanical signal controlling steady-state vascular contraction in the myogenic response. It is shown that, at the scale of a resistance vessel, wall stress, and not stretch (strain), is the likely physiological signal controlling the steady-state myogenic response. The model is then used to test nine candidate VSM stress-controlled channel variants by fitting two separate sets of steady-state myogenic response data. The channel variants include nonselective cation (NSC), supplementary Ca(2+) and Na(+), L-type Ca(2+), and large conductance Ca(2+)-activated K(+) channels. The nine variants are tested in turn, and model fits suggest that stress control of Ca(2+) or Na(+) influx through NSC, supplementary Ca(2+) or Na(+), or L-type Ca(2+) channels is sufficient to produce observed steady-state diameter changes with pressure. However, simulations of steady-state VSM membrane potential, cytosolic Ca(2+), and Na(+) with pressure show only that Na(+) influx through NSC channel also generates known trends with increasing pressure, indicating that stress-controlled Na(+) influx through NSC is sufficient to generate the myogenic response.  相似文献   

14.
An 11-day trial was conducted to investigate the osmoregulatory capacity (OC) and regulation of K(+), Na(+), Ca(2+) and Mg(2+) of Penaeus monodon juveniles when exposed to K(+) deficient inland saline water (ISW) of four different salinities (5, 15, 25 and 35 ppt). The survival of juveniles showed a positive linear relationship (R(2) ranging from 0.72 to 0.98) with salinity. At the end of the trial, juveniles were able to survive only in 5 ppt of ISW and showed no changes in OC when transferred from ocean water (OW) to ISW. Further, the OC of juveniles in 5 ppt of ISW was significantly different (P<0.05) from the OC of juveniles exposed to 15, 25 and 35 ppt and exhibited strong serum K(+), Na(+), Ca(2+) and Mg(2+) regulation monitored over 16 h. In contrast, at 35 ppt, significant decrease (P<0.05) in serum K(+) and Mg(2+) concentrations and accumulation of serum Na(+) concentration occurred after 16 h of exposure to ISW. At higher salinity, an increase in serum Na(+) concentration leads to an increase in the serum osmolality of the juveniles, which in turn causes decrease in the OC of the juveniles. The results of this study suggest that K(+) deficiency in ISW has a negative effect on survival, OC and the ability of P. monodon juveniles to regulate serum Na(+), K(+), Ca(2+) and Mg(2+) concentrations. These effects are compounded as salinity increases.  相似文献   

15.
It has long been recognized that divalent cations modulate cell excitability. Sensory nerve excitability is of critical importance to peripheral diseases associated with pain, sensory dysfunction and evoked reflexes. Thus we have studied the role these cations play on dissociated sensory nerve activity. Withdrawal of both Mg(2+) and Ca(2+) from external solutions activates over 90% of dissociated mouse sensory neurons. Imaging studies demonstrate a Na(+) influx that then causes depolarization-mediated activation of voltage-gated Ca(2+) channels (Ca(V)), which allows Ca(2+) influx upon divalent re-introduction. Inhibition of Ca(V) (ω-conotoxin, nifedipine) or Na(V) (tetrodotoxin, lidocaine) fails to reduce the Na(+) influx. The Ca(2+) influx is inhibited by Ca(V) inhibitors but not by TRPM7 inhibition (spermine) or store-operated channel inhibition (SKF96365). Withdrawal of either Mg(2+) or Ca(2+) alone fails to evoke cation influxes in vagal sensory neurons. In electrophysiological studies of dissociated mouse vagal sensory neurons, withdrawal of both Mg(2+) and Ca(2+) from external solutions evokes a large slowly-inactivating voltage-gated current (I(DF)) that cannot be accounted for by an increased negative surface potential. Withdrawal of Ca(2+) alone fails to evoke I(DF). Evidence suggests I(DF) is a non-selective cation current. The I(DF) is not reduced by inhibition of Na(V) (lidocaine, riluzole), Ca(V) (cilnidipine, nifedipine), K(V) (tetraethylammonium, 4-aminopyridine) or TRPM7 channels (spermine). In summary, sensory neurons express a novel voltage-gated cation channel that is inhibited by external Ca(2+) (IC(50)~0.5 μM) or Mg(2+) (IC(50)~3 μM). Activation of this putative channel evokes substantial cation fluxes in sensory neurons.  相似文献   

16.
The enzyme Na(+), K(+)-ATPase was investigated in the gills of selected hyper-regulating gammarid amphipods. Gill Na(+), K(+)-ATPase was characterised with respect to the main cation and co-factor concentrations for the freshwater amphipod Gammarus pulex. The optimum cation and co-factor concentrations for maximal gill Na(+), K(+)-ATPase activity in G. pulex were 100mM Na(+), 15mM K(+), 15mM Mg(2+) and 5mM ATP, at pH 7.2. The effects of salinity acclimation on gill Na(+), K(+)-ATPase activity and haemolymph sodium concentrations was investigated in selected gammarid amphipods from different salinity environments. Maximal enzyme activity occurred in all gammarids when acclimated to the most dilute media. This maximal activity coincided with the largest sodium gradient between the haemolymph and the external media. As the haemolymph/medium sodium gradient decreased, a concomitant reduction in gill Na(+), K(+)-ATPase activity occurred. This implicates the involvement of gill Na(+), K(+)-ATPase in the active uptake of sodium from dilute media in hyper-regulating gammarids.  相似文献   

17.
18.
S Zhang  S J Kehl    D Fedida 《Biophysical journal》2001,81(1):125-136
Zinc ions are known to induce a variable depolarizing shift of the ionic current half-activation potential and substantially slow the activation kinetics of most K(+) channels. In Kv1.5, Zn(2+) also reduces ionic current, and this is relieved by increasing the external K(+) or Cs(+) concentration. Here we have investigated the actions of Zn(2+) on the gating currents of Kv1.5 channels expressed in HEK cells. Zn(2+) shifted the midpoint of the charge-voltage (Q-V) curve substantially more (approximately 2 times) than it shifted the V(1/2) of the g-V curve, and this amounted to +60 mV at 1 mM Zn(2+). Both Q1 and Q2 activation charge components were similarly affected by Zn(2+), which indicated free access of Zn(2+) to channel closed states. The maximal charge movement was also reduced by 1 mM Zn(2+) by approximately 15%, from 1.6 +/- 0.5 to 1.4 +/- 0.47 pC (n = 4). Addition of external K(+) or Cs(+), which relieved the Zn(2+)-induced ionic current reduction, decreased the extent of the Zn(2+)-induced Q-V shift. In 135 mM extracellular Cs(+), 200 microM Zn(2+) reduced ionic current by only 8 +/- 1%, compared with 71% reduction in 0 mM extracellular Cs(+), and caused a comparable shift in both the g-V and Q-V relations (17.9 +/- 0.6 mV vs. 20.8 +/- 2.1 mV, n = 6). Our results confirm the presence of two independent binding sites involved in the Zn(2+) actions. Whereas binding to one site accounts for reduction of current and binding to the other site accounts for the gating shift in ionic current recordings, both sites contribute to the Zn(2+)-induced Q-V shift.  相似文献   

19.
The TTX-sensitive Ca(2+) current [I(Ca(TTX))] observed in cardiac myocytes under Na(+)-free conditions was investigated using patch-clamp and Ca(2+)-imaging methods. Cs(+) and Ca(2+) were found to contribute to I(Ca(TTX)), but TEA(+) and N-methyl-D-glucamine (NMDG(+)) did not. HEK-293 cells transfected with cardiac Na(+) channels exhibited a current that resembled I(Ca(TTX)) in cardiac myocytes with regard to voltage dependence, inactivation kinetics, and ion selectivity, suggesting that the cardiac Na(+) channel itself gives rise to I(Ca(TTX)). Furthermore, repeated activation of I(Ca(TTX)) led to a 60% increase in intracellular Ca(2+) concentration, confirming Ca(2+) entry through this current. Ba(2+) permeation of I(Ca(TTX)), reported by others, did not occur in rat myocytes or in HEK-293 cells expressing cardiac Na(+) channels under our experimental conditions. The report of block of I(Ca(TTX)) in guinea pig heart by mibefradil (10 microM) was supported in transfected HEK-293 cells, but Na(+) current was also blocked (half-block at 0.45 microM). We conclude that I(Ca(TTX)) reflects current through cardiac Na(+) channels in Na(+)-free (or "null") conditions. We suggest that the current be renamed I(Na(null)) to more accurately reflect the molecular identity of the channel and the conditions needed for its activation. The relationship between I(Na(null)) and Ca(2+) flux through slip-mode conductance of cardiac Na(+) channels is discussed in the context of ion channel biophysics and "permeation plasticity."  相似文献   

20.
The present study shows that omega-agatoxin-TK, a toxin of the venom of Agelenopsis aperta, which is 10 times more concentrated than the P/Q type Ca(2+) channel blocker, omega-agatoxin-IVA in the venom, inhibits the high K(+) depolarisation-induced rise in internal Ca(2+) (Ca(i), as determined with fura-2) dose dependently in cerebral (striatal and hippocampal) isolated nerve endings, with calculated IC(50)'s of about 60nM. The maximal inhibition exerted by omega-agatoxin-TK in striatal synaptosomes (61 +/- 11%) is 10% larger than in hippocampal synaptosomes, suggesting a larger population of omega-agatoxin-TK-sensitive Ca(2+) channels in striatal than in hippocampal nerve endings. The N-type Ca(2+) channel blocker, omega-conotoxin-GVIA (1muM), inhibits part of the omega-agatoxin-TK-insensitive rise in Ca(i) induced by high K(+). In contrast to the inhibition exerted by omega-agatoxin-TK on the Ca(i) response to high K(+), omega-agatoxin-TK failed to inhibit the tetrodotoxin-sensitive elevations in Ca(i) and in internal Na(+) (Na(i), as determined with SBFI) induced by veratridine, indicating that the Ca(2+) influx activated by veratridine does not involve omega-agatoxin-TK-sensitive channels. High K(+) does not increase Na(i). In [(3)H]Glu preloaded hippocampal synaptosomes super-fused with low Na(+) Krebs Ringer HEPES (a condition that guarantees the elimination of neurotransmitter transporters-mediated release), the release of [(3)H]Glu induced by high K(+) is absolutely dependent on the entrance of external Ca(2+). This exocytotic release of [(3)H]Glu attained in the absence of a chemical Na(+) gradient is inhibited with the same potency and efficacy by omega-agatoxin-TK and by omega-agatoxin-IVA, which is known to differ from omega-agatoxin-TK in its amino terminal moiety. These results indicate that omega-agatoxin-TK represents a good pharmacological tool to study P/Q type Ca(2+) channel-mediated responses in cerebral nerve endings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号