首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao ZG  Zhu SS  Zhang YH  Bian XF  Wang Y  Jiang L  Liu X  Chen LM  Liu SJ  Zhang WW  Ikehashi H  Wan JM 《Planta》2011,233(3):485-494
Hybrid sterility hinders the exploitation of the heterosis displayed by japonica?×?indica rice hybrids. The variation in pollen semi-sterility observed among hybrids between the japonica recipient cultivar and each of two sets of chromosome segment substitution lines involving introgression from an indica cultivar was due to a factor on chromosome 5 known to harbor the gene S24. S24 was fine mapped to a 42?kb segment by analyzing a large F(2) population bred from the cross S24-NIL?×?Asominori, while the semi-sterility shown by the F(1) hybrid was ascribable to mitotic failure at the early bicellular pollen stage. Interestingly, two other pollen sterility genes (f5-Du and Sb) map to the same region (Li et al. in Chin Sci Bull 51:675-680, 2006; Wang et al. in Theor Appl Genet 112:382-387, 2006), allowing a search for candidate genes in the 6.4?kb overlap between the three genes. By sequencing the overlapped fragment in wild rice, indica cultivars and japonica cultivars, a protein ankyrin-3 encoded by the ORF2 was identified as the molecular base for S24. A cultivar Dular was found to have a hybrid-sterility-neutral allele, S24-n, in which an insertion of 30?bp was confirmed. Thus, it was possible to add one more case of molecular bases for the hybrid sterility. No gamete abortion is caused on heterozygous maternal genotype with an impaired sequence from the hybrid-sterility-neutral genotype. This result will be useful in understanding of wide compatibility in rice breeding.  相似文献   

2.
Zhao ZG  Jiang L  Zhang WW  Yu CY  Zhu SS  Xie K  Tian H  Liu LL  Ikehashi H  Wan JM 《Planta》2007,226(5):1087-1096
Partial abortion of female gametes and the resulting semi-sterility of indica × japonica inter-subspecific rice hybrids have been ascribed to an allelic interaction, which can be avoided by the use of wide compatibility varieties. To further understand the genetic mechanism of hybrid sterility, we have constructed two sets of hybrids, using as male parent either the typical japonica variety Asominori, or the wide compatibility variety 02428; and as female, a set of 66 chromosome segment substitution lines in which various chromosomal segments from the indica variety IR24 have been introduced into a common genetic background of Asominori. Spikelet semi-sterility was observed in hybrid between CSSL34 and Asominori, which is known to carry the sterility gene S31 (Zhao et al. in Euphytica 151:331–337, 2006). Cytological analysis revealed that the semi-sterility of the CSSL34 × Asominori hybrid was caused primarily by partial abortion of the embryo sac at the stage of the mitosis of the functional megaspore. A population of 1,630 progeny of the three-way cross (CSSL34 × 02428) × Asominori was developed to map S31. Based on the physical location of linked molecular markers, S31 was thereby delimited to a 54-kb region on rice chromsome 5. This fragment contains eight predicted open reading frames, four of which encode known proteins and four putative proteins. These results are relevant to the map-based cloning of S31, and the development of marker-assisted transfer of non-sterility allele inducing alleles to breeding germplasm, to allow for a more efficient exploitation of heterosis in hybrid rice.  相似文献   

3.
Interspecific crossing of the African indigenous rice Oryza glaberrima with Oryza sativa cultivars is hindered by crossing barriers causing 100% spikelet sterility in F1 hybrids. Since hybrids are partially female fertile, fertility can be restored by back crossing (BC) to a recurrent male parent. Distinct genetic models on spikelet sterility have been developed predicting, e.g., the existence of a gamete eliminator and/or a pollen killer. Linkage of sterility to the waxy starch synthase gene and the chromogen gene C, both located on chromosome 6, have been demonstrated. We selected a segregating BC2F3 population of semi-sterile O. glaberrima × O. sativa indica hybrid progenies for analyses with PCR markers located at the respective chromosome-6 region. These analyses revealed that semi-sterile plants were heterozygous for a marker (OSR25) located in the waxy promoter, whereas fertile progenies were homozygous for the O. glaberrima allele. Adjacent markers showed no linkage to spikelet sterility. Semi-sterility of hybrid progenies was maintained at least until the F4 progeny generation, suggesting the existence of a pollen killer in this plant material. Monitoring of reproductive plant development showed that spikelet sterility was at least partially due to an arrest of pollen development at the microspore stage. In order to address the question whether genes responsible for F1 sterility in intraspecific hybrids (O. sativa indica × japonica) also cause spikelet sterility in interspecific hybrids, crossings with wide compatibility varieties (WCV) were performed. WCV accessions possess "neutral" S-loci (Sn) improving fertility in intraspecific hybrids. This experiment showed that the tested Sn-loci had no fertility restoring effect in F1 interspecific hybrids. Pollen development was completely arrested at the microspore stage and grains were never obtained after selfing. This suggests that distinct or additional S-loci are responsible for sterility of O. glaberrima × O. sativa hybrids.Communicated by H.C. Becker  相似文献   

4.
The partial pollen abortion of hybrids between the indica and japonica subspecies of Asian cultivated rice is one of the major barriers in utilizing intersubspecific heterosis in hybrid rice breeding. Although a single hybrid pollen sterility locus may have little impact on spikelet fertility, the cumulative effect of several loci usually leads to a serious decrease in spikelet fertility. Isolating of the genes conferring hybrid pollen sterility is necessary to understand this phenomenon and to overcome the resulting genetic barrier. In this study, a new locus for F1 pollen sterility, S-d, was identified on the short arm of chromosome 1 by analyzing the genetic effect of substituted segments of the near-isogenic line E11-5 derived from the japonica variety Taichung 65 (recurrent parent) and the indica variety Dee-geo-woo-gen (donor parent). The S-d locus was first mapped to a 0.8 cM interval between SSR markers PSM46 and PSM80 using a F2 population of 125 individuals. The flanking markers were then used to identify recombinants from a population of 2,160 plants derived from heterozygotes of the primary F2 population. Simultaneously, additional markers were developed from genomic sequence divergence in this region. Analysis of the recombinants in the region resulted in the successful mapping of the S-d locus to a 67-kb fragment, containing 17 predicted genes. Positional cloning of this gene will contribute to our understanding of the molecular basis for partial pollen sterility of intersubspecific F1 hybrids in rice.  相似文献   

5.
Kubo T  Yoshimura A  Kurata N 《Genetics》2011,189(3):1083-1092
In intraspecific crosses between cultivated rice (Oryza sativa) subspecies indica and japonica, the hybrid male sterility gene S24 causes the selective abortion of male gametes carrying the japonica allele (S24-j) via an allelic interaction in the heterozygous hybrids. In this study, we first examined whether male sterility is due solely to the single locus S24. An analysis of near-isogenic lines (NIL-F(1)) showed different phenotypes for S24 in different genetic backgrounds. The S24 heterozygote with the japonica genetic background showed male semisterility, but no sterility was found in heterozygotes with the indica background. This result indicates that S24 is regulated epistatically. A QTL analysis of a BC(2)F(1) population revealed a novel sterility locus that interacts with S24 and is found on rice chromosome 2. The locus was named Epistatic Factor for S24 (EFS). Further genetic analyses revealed that S24 causes male sterility when in combination with the homozygous japonica EFS allele (efs-j). The results suggest that efs-j is a recessive sporophytic allele, while the indica allele (EFS-i) can dominantly counteract the pollen sterility caused by S24 heterozygosity. In summary, our results demonstrate that an additional epistatic locus is an essential element in the hybrid sterility caused by allelic interaction at a single locus in rice. This finding provides a significant contribution to our understanding of the complex molecular mechanisms underlying hybrid sterility and microsporogenesis.  相似文献   

6.
Hybrids between the indica and japonica subspecies of rice(Oryza sativa) are usually sterile, which hinders utilization of heterosis in the inter-subspecific hybrid breeding. The complex locus Sa comprises two adjacently located genes, SaF and SaM, which interact to cause abortion of pollen grains carrying the japonica allele in japonica-indica hybrids. Here we showed that silencing of SaF or SaM by RNA interference restored male fertility in indica-japonica hybrids with heterozygous Sa. We further used clustered regularly interspaced short palindromic repeats(CRISPR)/Cas9-based genome editing to knockout the SaF and SaM alleles, respectively, of an indica rice line to create hybrid-compatible lines. The resultant artificial neutral alleles did not affect pollen viability and other agricultural traits, but did break down the reproductive barrier in the hybrids. We found that some rice lines have natural neutral allele Sa-n, which was compatible with the typical japonica or indica Sa alleles in hybrids. Our results demonstrate that SaF and SaM are required for hybrid male sterility, but are not essential for pollen development. This study provides effective approaches for the generation of hybrid-compatible lines by knocking out the Sa locus or using the natural Sa-n allele to overcome hybrid male sterility in rice breeding.  相似文献   

7.
Pollen sterility is one of the main hindrances against the utilization of strong intersubspecific (indica-japonica) heterosis in rice. We looked for neutral alleles at known pollen sterility loci Sd and Se that could overcome this pollen sterility characteristic. Taichung 65, a typical japonica cultivar, and its near isogenic lines E7 and E8 for pollen sterility loci Sd and Se were employed as tester lines for crossing with 13 accessions of wild rice (O. rufipogon). Pollen fertility and genotypic segregations of the molecular markers tightly linked with Sd and Se loci were analyzed in the paired F(1)s and F(2) populations. One accession of wild rice (GZW054) had high pollen fertility in the paired F(1)s between Taichung 65 and E7 or E8. Genotypic segregations of the molecular markers tightly linked with Sd and Se loci fit the expected Mendelian ratio (1:2:1), and non-significances were shown among the mean pollen fertilities with the maternal, parental, and heterozygous genotypes of each molecular markers tightly linked with Sd and Se loci. Evidentially, it indicated that the alleles of Sd and Se loci for GZW054 did not interact with those of Taichung 65 and its near isogenic lines, and, thus were identified as neutral alleles Sd(n) and Se(n). These neutral genes could become important germplasm resources for overcoming pollen sterility in indica-japonica hybrids, making utilization of strong heterosis in such hybrids viable.  相似文献   

8.
The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F(1) pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F(1) sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F(1) pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids.  相似文献   

9.
Chu YE  Oka H 《Genetics》1972,70(1):163-173
Weakness of F1 plants is frequently found in hybrids between strains of Oryza breviligulata (wild) and O. glaberrima (cultivated rice) endemic to West Africa. A set of two complementary dominant weakness genes, W1 and W2, was found to control the observed F1 weakness. Many breviligulata strains had W1, while most of the glaberrima and semi-wild strains had W2 or were free of both. In the weak F1 plants, tissue differentiation in adventitious roots seemed to be disturbed. Modifier genes affecting the expression of the weakness genes appear to be present also.  相似文献   

10.
11.
Rice yellow mottle virus (RYMV) is the most damaging rice-infecting virus in Africa. However, few sources of high resistance and only a single major resistance gene, RYMV1, are known to date. We screened a large representative collection of African cultivated rice (Oryza glaberrima) for RYMV resistance. Whereas high resistance is known to be very rare in Asian cultivated rice (Oryza sativa), we identified 29 (8%) highly resistant accessions in O. glaberrima. The MIF4G domain of RYMV1 was sequenced in these accessions. Some accessions possessed the rymv1-3 or rymv1-4 recessive resistance alleles previously described in O. glaberrima Tog5681 and Tog5672, respectively, and a new allele, rymv1-5, was identified, thereby increasing the number of resistance alleles in O. glaberrima to three. In contrast, only a single allele has been reported in O. sativa. Markers specific to the different alleles of the RYMV1 gene were developed for marker-assisted selection of resistant genotypes for disease management. In addition, the presence of the dominant susceptibility allele (Rymv1-1) in 15 resistant accessions suggests that their resistance is under different genetic control. An allelism test involving one of those accessions revealed a second major resistance gene, i.e., RYMV2. The diversity of resistance genes against RYMV in O. glaberrima species is discussed in relation to the diversification of the virus in Africa.  相似文献   

12.
13.
The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the ‘Oryza Map Alignment Project’ (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project’s finished reference genome – O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara – thought to be the progenitor of modern cultivated rice.  相似文献   

14.
A strong postzygotic reproductive barrier separates the recently diverged Asian and African cultivated rice species, Oryza sativa and O. glaberrima. Recently a model of genetic incompatibilities between three adjacent loci: S1A, S1 and S1B (called together the S1 regions) interacting epistatically, was postulated to cause the allelic elimination of female gametes in interspecific hybrids. Two candidate factors for the S1 locus (including a putative F-box gene) were proposed, but candidates for S1A and S1B remained undetermined. Here, to better understand the basis of the evolution of regions involved in reproductive isolation, we studied the genic and structural changes accumulated in the S1 regions between orthologous sequences. First, we established an 813 kb genomic sequence in O. glaberrima, covering completely the S1A, S1 and the majority of the S1B regions, and compared it with the orthologous regions of O. sativa. An overall strong structural conservation was observed, with the exception of three isolated regions of disturbed collinearity: (1) a local invasion of transposable elements around a putative F-box gene within S1, (2) the multiple duplication and subsequent divergence of the same F-box gene within S1A, (3) an interspecific chromosomal inversion in S1B, which restricts recombination in our O. sativa×O. glaberrima crosses. Beside these few structural variations, a uniform conservative pattern of coding sequence divergence was found all along the S1 regions. Hence, the S1 regions have undergone no drastic variation in their recent divergence and evolution between O. sativa and O. glaberrima, suggesting that a small accumulation of genic changes, following a Bateson-Dobzhansky-Muller (BDM) model, might be involved in the establishment of the sterility barrier. In this context, genetic incompatibilities involving the duplicated F-box genes as putative candidates, and a possible strengthening step involving the chromosomal inversion might participate to the reproductive barrier between Asian and African rice species.  相似文献   

15.
The wide adoption of hybrid rice has greatly increased rice yield in the last several decades. The utilization of heterosis facilitated by male sterility has been a common strategy for hybrid rice development. Here, we summarize our efforts in the genetic and molecular understanding of heterosis and male sterility together with the related progress from other research groups. Analyses of F1 diallel crosses show that strong heterosis widely exists in hybrids of diverse germplasms, and inter-subsp...  相似文献   

16.
Background and AimsCold stress in rice (Oryza sativa) plants at the reproductive stage prevents normal anther development and causes pollen sterility. Tapetum hypertrophy in anthers has been associated with pollen sterility in response to cold at the booting stage. Here, we re-examined whether the relationships between anther abnormality and pollen sterility caused by cold stress at the booting stage in rice can be explained by a monovalent factor such as tapetum hypertrophy.MethodsAfter exposing plants to a 4-d cold treatment at the booting stage, we collected and processed anthers for transverse sectioning immediately and at the flowering stage. We anatomically evaluated the effect of cold treatment on anther internal morphologies, pollen fertilities and pollen numbers in the 13 cultivars with various cold sensitivities.Key ResultsWe observed four types of morphological anther abnormalities at each stage. Pollen sterility was positively correlated with the frequency of undeveloped locules, but not with tapetum hypertrophy as commonly believed. In cold-sensitive cultivars grown at low temperatures, pollen sterility was more frequent than anther morphological abnormalities, and some lines showed remarkably high pollen sterility without any anther morphological alterations. Most morphological anomalies occurred only in specific areas within large and small locules. Anther length tended to shorten in response to cold treatment and was positively correlated with pollen number. One cultivar showed a considerably reduced pollen number, but fertile pollen grains under cold stress. We propose three possible relationships to explain anther structure and pollen sterility and reduction due to cold stress.ConclusionsThe pollen sterility caused by cold stress at the booting stage was correlated with the frequency of entire locule-related abnormalities, which might represent a phenotypic consequence, but not a direct cause of pollen abortion. Multivalent factors might underlie the complicated relationships between anther abnormality and pollen sterility in rice.  相似文献   

17.
以2个籼稻品种和2个粳稻品种及其籼粳杂种一代为材料,通过水培试验研究了硅对籼粳亚种间杂种雌雄配子育性和结实率的影响。结果表明:4个水稻亲本的育性正常,而亚种间杂种‘台中65’/‘广陆矮4号’和‘穞稻’/‘秋光’F1花粉育性分别为40.1%和50.3%,小穗育性分别为25.8%和40.3%;其F1胚囊具有正常的卵细胞、助细胞、极核及反足细胞,胚囊败育率分别为5.33%和3.33%。加硅处理F1每个柱头上花粉粒多于25粒的小花数分别占90%和90.5%,而不加硅处理高于20粒的小花数仅占8%和10%;加硅处理F1花粉离体萌发率分别为75.15%和76.23%,小穗的结实率分别达到65.5%和68.7%,而不加硅处理的分别为46.7%和48.13%,小穗结实率分别只有25.8%和40.3%,且加硅处理极显著高于不加硅处理。研究表明,水稻籼粳杂种存在半不育现象,并主要由花粉半不育和花药开裂性差造成;硅肥能促进杂种F1植株的花药开裂,明显增加柱头上花粉粒数目,并促进花粉萌发,显著提高小穗的结实率。  相似文献   

18.
The Genic Nature of Gamete Eliminator in Rice   总被引:12,自引:3,他引:9       下载免费PDF全文
Y. Sano 《Genetics》1990,125(1):183-191
The two cultivated rice species, Oryza sativa and Oryza glaberrima, are morphologically alike but are reproductively isolated from each other by hybrid sterility. The hybrid is male sterile but partially female fertile. Backcross experiments were conducted to introduce an alien factor controlling hybrid sterility from O. glaberrima (W025) into O. sativa (T65wx) and examine the genetic basis. An extracted sterility factor, closely linked to the wx locus, induced gametic abortion due to allelic interaction and was tentatively designated as S(t). The segregation patterns for infertility was explained by assuming that W025 and T65wx carried S(t) and S(t)a, respectively, and gametes with S(t)a aborted only in the heterozygote (S(t)/S(t)a) although the elimination of female gametes was incomplete. Thus, S(t) seemed to be intermediate between a gamete eliminator and pollen killer. However, S(t) was proven to be likely the same as S1 which was formerly reported as gamete eliminator in a different genetic background of O. sativa. In addition, a chromosomal segment containing S1 (or S(t] caused a marked suppression of crossing over around it, suggesting the presence of an inversion. Further, female transmission of S1a increased as the segment containing S1 became small by recombination. After S1 was further purified by successive backcrosses up to the BC15 generation, it became pollen killer. The present results give evidence that a profound sterility gene such as gamete eliminator can be made from accumulation of pollen killer and its modifier(s) when pollen killer and modifier(s) are linked, they behave as a gene complex in the hybrid.  相似文献   

19.
Endogenous, 14 kb double-stranded RNAs (dsRNAs) have been found in two ecospecies of cultivated rice (temperate japonica rice and tropical japonica rice, Oryza sativa L.) and in wild rice (O. rufipogon, an ancestor of O. sativa). A comparison of the nucleotide and deduced amino acid sequences of the core regions of the RNA-dependent RNA polymerase domains found in these three dsRNAs suggested that these dsRNAs probably evolved independently within each host plant from a common ancestor. These dsRNAs were introduced into F1 hybrids by crossing cultivated rice and wild rice. Unusual cytoplasmic inheritance of these dsRNAs was observed in some F1 hybrids; the evolutionarily related dsRNAs were incompatible for each other, and the resident dsRNA of an egg cell from cultivated rice was excluded by the incoming dsRNA of a pollen cell from wild rice. Coexisting dsRNAs in the F1 hybrids segregated away from each other in the F2 plants. However, the total amount of these dsRNAs in the host cells remained constant (ca. 100 copies/cell). The stringent regulation of the dsRNA copy number may be responsible for their unusual inheritance.  相似文献   

20.
Oryza glaberrima is an endemic African cultivated rice species. To provide a tool for evaluation and utilisation of the potential of O. glaberrima in rice breeding, we developed an interspecific O. glaberrima×Oryza sativa genetic linkage map. It was based on PCR markers, essentially microsatellites and STSs. Segregation of markers was examined in a backcross (O. sativa/O. glaberrima//O. sativa) population. Several traits were measured on the BC1 plants, and major genes and QTLs were mapped for these traits. Several of these genes correspond well to previously identified loci. The overall map length was comparable to those observed in indica×japonica crosses, indicating that recombination between the two species occurs without limitation. However, three chromosomes show discrepancies with the indica×japonica maps. The colinearity with intraspecific maps was very good, confirming previous cytological observations. A strong segregation-distortion hot spot was observed on chromosome 6 near the waxy gene, indicating the presence of s 10 , a sporo-gametophytic sterility gene previously identified by Sano (1990). The main interests of such a PCR-based map for African rice breeding are discussed, including gene and QTL localisation, marker-assisted selection, and the development of interspecific introgression lines. Received: 1 June 1991 / Accepted: 22 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号