首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wen L  Wei W  Gu W  Huang P  Ren X  Zhang Z  Zhu Z  Lin S  Zhang B 《Developmental biology》2008,314(1):84-92
We describe an enhancer trap transgenic zebrafish line, ETvmat2:GFP, in which most monoaminergic neurons are labeled by green fluorescent protein (GFP) during embryonic development. The reporter gene of ETvmat2:GFP was inserted into the second intron of vesicular monoamine transporter 2 (vmat2) gene, and the GFP expression pattern recapitulates that of the vmat2 gene. The GFP positive neurons include the large and pear-shaped tyrosine hydroxylase positive neurons (TH populations 2 and 4) in the posterior tuberculum of ventral diencephalon (PT neurons), which are thought to be equivalent to the midbrain dopamine neurons in mammals. We found that these PT neurons and two other GFP labeled non-TH type neuronal groups, one in the paraventricular organ of the posterior tuberculum and the other in the hypothalamus, were significantly reduced after exposure to MPTP, while the rest of GFP-positive neuronal clusters, including those in telencephalon, pretectum, raphe nuclei and locus coeruleus, remain largely unchanged. Furthermore, we showed that the effects of hedgehog signaling pathway inhibition on the development of monoaminergic neurons can be easily visualized in individual living ETvmat2:GFP embryos. This enhancer trap line should be useful for genetic and pharmacological analyses of monoaminergic neuron development and processes underlying Parkinson's disease.  相似文献   

2.
An enhancer trap (ET) mediated by a transposon is an effective method for functional gene research. Here, an ET system based on a PB transposon that carries a mini Krt4 promoter (the keratin4 minimal promoter from zebrafish) and the green fluorescent protein gene (GFP) has been used to produce zebrafish ET lines. One enhancer trap line with eye-specific expression GFP named EYE was used to identify the trapped enhancers and genes. Firstly, GFP showed a temporal and spatial expression pattern with whole-embryo expression at 6, 12, and 24 hpf stages and eye-specific expression from 2 to 7 dpf. Then, the genome insertion sites were detected by splinkerette PCR (spPCR). The Krt4-GFP was inserted into the fourth intron of the gene itgav (integrin, alpha V) in chromosome 9 of the zebrafish genome, with the GFP direction the same as that of the itgav gene. By the alignment of homologous gene sequences in different species, three predicted endogenous enhancers were obtained. The trapped endogenous gene itgav, whose overexpression is related to hepatocellular carcinoma, showed a similar expression pattern as GFP detected by in situ hybridization, which suggested that GFP and itgav were possibly regulated by the same enhancers. In short, the zebrafish enhancer trap lines generated by the PB transposon-mediated enhancer trap technology in this study were valuable resources as visual markers to study the regulators and genes. This work provides an efficient method to identify and isolate tissue-specific enhancer sequences.  相似文献   

3.
彭夕洋  陈婷芳  黄婷  江志钢  吴秀山  邓云 《遗传》2013,35(4):511-518
本课题组前期研究中, 利用斑马鱼cmlc2 (Cardiac myosin light chain 2)基因启动子构建了一个用于斑马鱼心脏组织特异表达外源基因的转基因表达载体pTol2-cmlc2-IRES-EGFP。文章利用该载体构建了一个稳定表达EGFP的转基因斑马鱼品系, 并初步分析了EGFP的表达对该转基因斑马鱼品系的心脏发育和功能的影响。结果表明, 在建立的转基因斑马鱼品系早期胚胎发育过程中, 绿色荧光信号在心脏中特异表达, 该表达模式与原位杂交分析的cmlc2的表达模式结果相同; 该转基因斑马鱼品系的心脏形态及发育生长正常; 进一步通过M-Mode分析心脏生理学功能的结果表明:该转基因品系心动周期、心率、收缩与舒张表面积及表面积缩短率等重要生理指标与正常野生型的斑马鱼对照组相比没有显著差别。以上结果表明该转基因品系中绿色荧光蛋白的表达对斑马鱼心脏的发育和功能没有影响。研究结果为进一步利用该载体建立外源目的基因转基因表达模型, 研究心脏表达基因的功能奠定了重要基础。  相似文献   

4.
5.
6.
Green fluorescent protein (GFP) transgenic fish and their applications   总被引:11,自引:0,他引:11  
Gong Z  Ju B  Wan H 《Genetica》2001,111(1-3):213-225
The coupling of the GFP reporter system with the optical clarity of embryogenesis in model fish such as zebrafish and medaka is beginning to change the picture of transgenic fish study. Since the advent of first GFP transgenic fish in 1995, GFP transgenic fish technology have been quickly employed in many areas such as analyses of gene expression patterns and tissue/organ development, dissection of promoters/enhancers, cell lineage and axonal pathfinding, cellular localization of protein products, chimeric embryo and nuclear transplantation, cell sorting, etc. The GFP transgenic fish also have the potentials in analysis of upstream regulatory factors, mutagenesis screening and characterization, and promoter/enhancer trap. Our own studies indicate that GFP transgenic fish may become a new source of novel variety of ornamental fish. Efforts are also being made in our laboratory to turn GFP transgenic fish into biomonitoring organisms for surveillance of environmental pollution.  相似文献   

7.
Transgenic animals are powerful tools to study gene function invivo. Here we characterize several transgenic zebrafish lines that express green fluorescent protein (GFP) under the control of the LCRRH2-RH2-1 or LCRRH2-RH2-2 green opsin regulatory elements. Using confocal immunomicroscopy, stereo-fluorescence microscopy, and Western blotting, we show that the Tg(LCRRH2-RH2-1:GFP)pt112 and Tg(LCRRH2-RH2-2:GFP)pt115 transgenic zebrafish lines express GFP in the pineal gland and certain types of photoreceptors. In addition, some of these lines also express GFP in the hatching gland, optic tectum, or olfactory bulb. Some of the expression patterns differ significantly from previously published similar transgenic fish lines, making them useful tools for studying the development of the corresponding tissues and organs. In addition, the variations of GFP expression among different lines corroborate the notion that transgenic expression is often subjected to position effect, thus emphasizing the need for careful verification of expression patterns when transgenic animal models are utilized for research.  相似文献   

8.
A stable Tg(UAS:GFP) zebrafish line was generated and crossed with Tg(hsp70:GAL4) line, in which the GAL4 gene is under the control of an inducible zebrafish promoter derived from the heat shock 70 protein gene (hsp70). The dynamic green fluorescent protein (GFP) expression in early zebrafish embryos in the GAL4/UAS binary system was then investigated. We found that, at early developmental stages, expression of GFP effector gene was restricted and required a long recovery time to reach a detectable level. At later developmental stage (after 2 days postfertilization), GFP could be activated in multiple tissues in a shorter time, apparently due to a higher level of GAL4 messenger RNA induction. It appears that the type of tissues expressing GFP was dependent on whether they had been developed at the time of heat shock. Therefore, the delayed and restricted transgene expression should be taken into consideration when GAL4/UAS system is used to study transgene expression in early developmental stages.  相似文献   

9.
10.
Pou4f2 acts as a key node in the comprehensive and step‐wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2‐green fluorescent protein (GFP) fusion protein expressed in RGCs. Co‐localization of POU4F2 and GFP in the retina and brain of Pou4f2‐GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild‐type mice, the expression patterns of POU4F2 and POU4F1 and the co‐expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2‐GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2‐GFP/GFP homozygote and wild‐type mice. These results demonstrated that the development of RGCs in Pou4f2‐GFP/GFP homozygote mice was the same as in wild‐type mice. Thus, the present Pou4f2‐GFP knock‐in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs.  相似文献   

11.
12.
13.
目的:构建miR-22心肌特异转基因斑马鱼系,在体评估miR-22对于心肌肥厚的作用。方法:构建pTol2-CMLC2-miR-22-IRES-EGFP表达载体。通过显微注射的方法将tol2重组质粒于一细胞期注射入斑马鱼受精卵胚胎中,荧光筛选获得心肌特异表达绿色荧光的斑马鱼胚胎,并稳定表达传代。然后对稳定传代的成年斑马鱼心脏进行心肌肥厚及心功能的检测。结果:成功建立了miR-22心肌特异转基因斑马鱼系,通过定量PCR确定心肌中miR-22表达升高,荧光显微镜观察发现斑马鱼心肌出现绿色荧光。miR-22心脏特异过表达的转基因鱼系的成年鱼与野生对照组相比,出现了心肌肥厚的现象,心肌肥厚分子标志物nppa、myh7明显升高。斑马鱼心脏病理切片结果同样显示出miR-22心肌特异转基因斑马鱼出现了心肌肥厚的现象。结论:成功构建了miR-22心肌特异转基因斑马鱼,为研究心肌中miR-22的生物学功能提供了重要的工具,并证明miR-22心脏特异过表达会引起斑马鱼心肌肥厚。  相似文献   

14.
Wang R  Li Z  Wang Y  Gui JF 《PloS one》2011,6(7):e22555
Several transgenic zebrafish lines for liver development studies had been obtained in the first decade of this century, but not any transgenic GFP zebrafish lines that mark the through liver development and organogenesis were reported. In this study, we analyzed expression pattern of endogenous Apo-14 in zebrafish embryogenesis by whole-mount in situ hybridization, and revealed its expression in liver primordium and in the following liver development. Subsequently, we isolated zebrafish Apo-14 promoter of 1763 bp 5'-flanking sequence, and developed an Apo-14 promoter-driven transgenic zebrafish Tg(Apo14: GFP). And, maternal expression and post-fertilization translocation of Apo-14 promoter-driven GFP were observed in the transgenic zebrafish line. Moreover, we traced onset expression of Apo-14 promoter-driven GFP and developmental behavior of the expressed cells in early heterozygous embryos by out-crossing the Tg(Apo14: GFP) male to the wild type female. Significantly, the Apo-14 promoter-driven GFP is initially expressed around YSL beneath the embryo body at 10 hpf when the embryos develop to tail bud prominence. In about 14-somite embryos at 16-17 hpf, a typical "salt-and-pepper" expression pattern is clearly observed in YSL around the yolk sac. Then, a green fluorescence dot begins to appear between the notochord and the yolk sac adjacent to otic vesicle at about 20 hpf, which is later demonstrated to be liver primordium that gives rise to liver. Furthermore, we investigated dynamic progression of liver organogenesis in the Tg(Apo14: GFP) zebrafish, because the Apo-14 promoter-driven GFP is sustainably expressed from hepatoblasts and liver progenitor cells in liver primordium to hepatocytes in the larval and adult liver. Additionally, we observed similar morphology between the liver progenitor cells and the GFP-positive nuclei on the YSL, suggesting that they might originate from the same progenitor cells in early embryos. Overall, the current study provides a transgenic zebrafish line that marks the through liver organogenesis.  相似文献   

15.
16.
17.
Cell migration is fundamental to the inflammatory response, but uncontrolled cell migration and excess recruitment of neutrophils and other leukocytes can cause damage to the tissue. Here we describe the use of an in vivo model – the Tg(mpx:GFP)i114 zebrafish line, in which neutrophils are labelled by green fluorescent protein (GFP) – to screen a natural product library for compounds that can affect neutrophil migratory behaviour. Among 1040 fungal extracts screened, two were found to inhibit neutrophil migration completely. Subfractionation of these extracts identified sterigmatocystin and antibiotic PF1052 as the active components. Using the EZ-TAXIScan chemotaxis assay, both compounds were also found to have a dosage-dependent inhibitory effect on murine neutrophil migration. Furthermore, neutrophils treated with PF1052 failed to form pseudopods and appeared round in shape, suggesting a defect in PI3-kinase (PI3K) signalling. We generated a transgenic neutrophil-specific PtdIns(3,4,5)P3 (PIP3) reporter zebrafish line, which revealed that PF1052 does not affect the activation of PI3K at the plasma membrane. In human neutrophils, PF1052 neither induced apoptosis nor blocked AKT phosphorylation. In conclusion, we have identified an antibiotic from a natural product library with potent anti-inflammatory properties, and have established the utility of the mpx:GFP transgenic zebrafish for high-throughput in vivo screens for novel inhibitors of neutrophil migration.KEY WORDS: Neutrophil, Recruitment, Migration, Drug screen, Zebrafish  相似文献   

18.
Wu YL  Pan X  Mudumana SP  Wang H  Kee PW  Gong Z 《Gene》2008,408(1-2):85-94
In the present study, a zebrafish hsp27 promoter was isolated and used to develop heat shock inducible gfp transgenic zebrafish. The endogenous hsp27 mRNAs were constitutively expressed from 4 hpf and increased in several regions of brain, heart and somites in early embryogenesis until 24 hpf. Subsequently, the expression was reduced significantly but maintained in the heart and ears. Heat shock induced hsp27 mRNAs in the blastoderm from 6 hpf and later in somites, branchial arches and several regions of brain. Similarly in hsp27-gfp transgenic zebrafish, constitutive GFP expression was observed from 11 hpf. GFP expression was mainly in the skin cells and increased to the peak level at 7 dpf, followed by a reduction. The constitutive GFP expression in the heart was initiated from 50 hpf and maintained even in the adult fish. After heat shock, GFP expression was mainly induced in the muscle in addition to a mild increase in the skin and heart. The early stages of the embryos were more sensitive than late stages as the time required for induced GFP expression in the muscle is shorter. Thus, the hsp27-gfp transgenic line generally recapitulates the expression pattern and heat shock inducibility of endogenous hsp27 RNAs. We also tested the potential of using the hsp27-gfp transgenic zebrafish embryos for heavy metal induction and demonstrated the inducibility of GFP expression by arsenic; this pattern of induction was also supported by examination of endogenous hsp27 mRNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号