首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, structure and spectroscopic properties on complexes with the formula [Cu(Lm)2] (1) and Cu(NO3)2(HLm)2 (2), where HLm = thiophene-2-carbaldehyde thiosemicarbazone, have been developed. The molecular structure of compound 1 consists of monomeric entities. The copper(II) ions exhibit distorted square-planar geometry with both bidentate thiosemicarbazone ligands placed in a centrosymmetric way. Metal to ligand pi-backdonation is proposed to explain several structural and spectroscopic features in these complexes. The EPR spectra of compound 1 show an orthorhombic g tensor indicating the presence of weak magnetic exchange interactions. The reaction of compound 1 with glutathione causes the reduction of the metal ion and the substitution of the thiosemicarbazone ligand by the thiol ligand. This mechanism seems to be related to the cytotoxicity of this complex against Friend Erithroleukemia cells (FLC) and melanome B16F10 cells.  相似文献   

2.
Five novel antimony(III) complexes with the mono- and bis(thiosemicarbazone) ligands of 2N1S or 4N2S donor atoms, N'-[1-(2-pyridyl)ethylidene]morpholine-4-carbothiohydrazide (Hmtsc, L1) and bis[N'-[1-(2-pyridyl)ethylidene]]-1,4-piperazinedicarbothiohydrazide (H(2)ptsc, L7), and the tridentate semicarbazone ligand of 2N1O donor atoms, 2-acetylpyridine semicarbazone (Hasc, L2b), were prepared by reactions of SbCl(3) or SbBr(3), and characterized by elemental analysis, TG/DTA, FT-IR and (1)H NMR spectroscopy. The crystal and molecular structures of five antimony(III) complexes were determined by single-crystal X-ray structure analysis. The neutral, 6-coordinate antimony(III) complexes ([Sb(mtsc)Cl(2)] 1, [Sb(mtsc)Br(2)] 2, [Sb(asc)Cl(2)] 3 and [Sb(asc)Br(2)] 4) are depicted with one electron pair (5s(2)) of the antimony(III) atom, deprotonated forms of multidentate thiosemicarbazone or semicarbazone ligands, and two monodentate halogen ligands, respectively. In the dimer complex 5 ([Sb(2)(ptsc)Cl(4)]) with the ligand in which two tridentate thiosemicarbazone moieties are connected by the piperazine moiety, each antimony(III) was also described as a neutral 6-coordinate structure. These antimony(III) complexes were thermally stable around 200 degrees C. Water-soluble antimony(III) complexes 1 and 2 showed moderate antimicrobial activities against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and -negative bacteria (Escherichia coli and Pseudomonas aeruginosa), yeasts (Candida albicans and Saccharomyces cerevisiae) and molds (Aspergillus niger and Penicillium citrinum). Complex 5 showed moderate antimicrobial activities against four bacteria, and two molds, while the ligand itself showed only modest antimicrobial activities against selected bacteria (B. subtilis, E. coli and S. aureus). The molecular structures and antimicrobial activities of antimony(III) complexes were compared with those of bismuth(III) complexes in the same 15 group in the periodic table.  相似文献   

3.
Biological studies on [Fe(L)2](NO3).0.5H2O (1), [Fe(L)2][PF6] (2), [Co(L)2](NCS) (3), [Ni(HL)2]Cl2.3H2O (4) and Cu(L)(NO3) (5), where HL=C7H8N4S, pyridine-2-carbaldehyde thiosemicarbazone, have been carried out. The crystal structure of compound 3 has been solved. It consists of discrete monomeric cationic entities containing cobalt(III) ions in a distorted octahedral environment. The metal ion is bonded to one sulfur and two nitrogen atoms of each thiosemicarbazone molecule. The thiocyanate molecules act as counterions. The copper(II) and iron(III) complexes react with reduced glutathione and 2-mercaptoethanol. The reaction of compound 1 with the above thiols causes the reduction of the metal ion and bis(thiosemicarbazonato)iron(II) species are obtained. The redox activity, and in particular the reaction with cell thiols, seems to be related to the cytotoxicity of these complexes against Friend erithroleukemia cells and melanoma B16F10 cells.  相似文献   

4.
Complexes of iron(II) and iron(III) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H), 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (4-Me-5-NH2-1-iqtsc-H) and 4-(m-aminophenyl)-2-formylpyridine thiosemicarbazone (4-m-NH2ph-2-pytsc-H) were synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibilities (from room temperature down to liquid N2 temperature), and M?ssbauer, electronic, and infrared spectral studies. On the basis of these studies, a highly distorted, high-spin, five-coordinate structure for Fe(HL)SO4 (HL = 1-iqtsc-H, 4-Me-5-NH2-1-iqtsc-H or 4-m-NH2ph-2-pytsc-H) and a distorted, low-spin, octahedral structure for Fe(HL)Cl2 are suggested. The EPR spectra of iron(III) complexes show that all have dxy low-spin ground state. All these complexes have been screened for their antitumor activity against the P 388 lymphocytic leukemia test system in mice and have been found to possess significant activity at the dosages employed.  相似文献   

5.
Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100 μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as “free” cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes.

Importance

Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly.  相似文献   

6.
The synthesis of three bis(thiosemicarbazone) compounds formed by the reaction of benzil with either thiosemicarbazide, 4-methyl-3-thiosemicarbazide or 4-phenyl-3-thiosemicarbazide are reported. The compounds were characterised by NMR spectroscopy, mass spectrometry and in the case of benzil bis(4-methyl-3-thiosemicarbazone) and benzil bis(4-phenyl-3-thiosemicarbazone) by X-ray crystallography. Attempts to purify benzil bis(thiosemicarbazone) and benzil bis (4-methyl-3-thiosemicarbazone) by recrystallisation resulted in the isolation of cyclised products that were characterised by X-ray crystallography. The 3 bis(thiosemicarbazone) compounds were used to synthesise both Cu(II) and Cu(I) complexes. The copper(II) complexes were formed by the reaction of the proligands with copper(II) acetate which gave neutral copper(II) complexes in which the thiosemicarbazone is doubly deprotonated, acting as a dianionic ligand. The copper(II)-benzil bis(4-phenyl-3-thiosemicarbazonato) complex was characterised by X-ray crystallography to show the copper in an essentially square planar N2S2 environment. The copper(I) complexes were synthesised by reacting the bis (thiosemicarbazone) ligands with [Cu(CH3CN)4]PF6 to give cationic complexes. The copper(I)-benzil-bis(thiosemicarbazone) complex was characterised by X-ray crystallography which revealed that the complex was a dimeric dication. Each of the benzil bis(thiosemicarbazone) ligands act as a bidentate N,S donor to each copper(I) atom, forming an overall helical structure in which each copper atom is in a strongly distorted tetrahedral N2S2 environment. Electrochemical measurements show that the copper(II)-benzil bis(thiosemicarbazonato) complex undergoes a reversible reduction at biologically accessible potentials.  相似文献   

7.
The synthetic, spectroscopic, and biological studies of Cu(II), Ni(II), Zn(II), Co(II), Mn(II), Fe(III) and Cr(III) complexes of N4-(7′-chloroquinoline-4′-ylamino)-N1-(2-hydroxy-benzylidene)thiosemicarbazone (HL) obtained by the reaction of N4-(7′-chloroquinolin-4′-ylamino)thiosemicarbazide with 2-hydroxybenzaldehyde. The structures of the complexes were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, 1H and 13C NMR and Mass spectra) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed the non-electrolytic nature of the complexes. The resulting colored products are mononuclear in nature. On the basis of the above studies, only one ligand was suggested to be coordinated to each metal atom by thione sulfur, azomethine nitrogen and phenolic oxygen to form mononuclear complexes in which the thiosemicarbazone behaves as a monobasic tridendate ligand. The ligand and its metal complexes were tested against Gram + ve bacteria (Staphylococcus aureus), Gram ? ve bacteria (Escherichia coli), fungi (Candida albicans) and (Fusarium solani). The tested compounds exhibited significant activity.  相似文献   

8.
The preparation of palladium(II) complexes of 3,5-diacyl-1,2,4-triazole bis(thiosemicarbazone) (H2L2), 2,6-diacylpyridine bis(thiosemicarbazone) (H2L3) and benzyl bis(thiosemicarbazone) (H2L4) is described. The new complexes [PdCl2(H2L2)] (1), [PdCl2(H2L3)] (2) and [PdL4].DMF (3) have been characterized by elemental analyses and spectroscopic studies (IR, 1H NMR and UV-Vis). The crystal and molecular structure of PdL4.DMF (L = bideprotonated form of benzyl bis(thiosemicarbazone)) has been determined by single-crystal X-ray diffraction: green triclinic crystal, a = 10.258(5), b = 10.595(5), c = 11.189(5) A, alpha = 97.820(5), beta = 108.140(5), gamma = 105.283(5) degrees, space group P1, Z = 1. The palladium atom is tetracoordinated by four donor atoms (SNNS) from L4 to form a planar tricyclic ligating system. The testing of the cytotoxic activity of compound 3 against several human, monkey and murine cell lines sensitive (HeLa, Vero and Pam 212) and resistant to cis-DDP (Pam-ras) suggests that compound 3 might be endowed with important antitumor properties since it shows IC50 values in a microM range similar to those of cis-DDP [cis-diamminedichloroplatinum(II)]. Moreover, compound 3 displays notable cytotoxic activity in Pam-ras cells resistant to cis-DDP (IC50 values of 78 microM versus 156 microM, respectively). On the other hand, the analysis of the interaction of this novel Pd-thiosemicarbazone compound with DNA secondary structure by means of circular dichroism spectroscopy indicates that it induces on the double helix conformational changes different from those induced by cis-DDP.  相似文献   

9.
The reaction of Ln(III) ions with the precursor [Cu(opba)]2− in DMSO has afforded a series of isostructural compounds of general chemical formula Ln2[Cu(opba)]3(DMSO)6(H2O) · (H2O), where Ln(III) stands for a lanthanide ion and opba stands for ortho-phenylenebis(oxamato). The crystal structure has been solved for the Gd(III) containing compound. It crystallizes in the orthorhombic system, space group Pbn21 (No. 33) with a = 9.4183(2) Å, b = 21.2326(4) Å, c = 37.9387(8) Å and Z = 4. The structure consists of ladder-like molecular motifs parallel to each other. To the best of our knowledge, this is the first Ln(III)Cu(II) coordination polymer family exhibiting the same crystal structure over the whole lanthanide series. The magnetic properties of the compounds have been investigated and the magnetic behavior of the Gd(III) containing compound was studied in more detail.  相似文献   

10.
Novel bismuth(III) complexes 1-4 with the tridentate thiosemicarbazone ligand of 2N1S donor atoms [Hmtsc (L1); 2-acetylpyridine (4N-morpholyl thiosemicarbazone)], the pentadentate double-armed thiosemicarbazone ligand of 3N2S donor atoms [H2dmtsc (L3); 2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone)] and the pentadentate double-armed semicarbazone ligand of 3N2O donor atoms [H2dasc (L4b); 2,6-diacetylpyridine bis(semicarbazone)], were prepared by reactions of bismuth(III) nitrate or bismuth(III) chloride and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR and NMR (1H and 13C) spectroscopy. The crystal and molecular structures of complexes 1, 2a, 2b and 4b, and the "free" ligand L1 were determined by single-crystal X-ray structure analysis. The dimeric 7-coordinate bismuth(III) complex [Bi(dmtsc)(NO3)]2, 1, and the monomeric 7-coordinate complexes [Bi(Hdasc)(H2O)](NO3)2.H2O (major product), 2a, and [Bi(dasc)(H2O)]NO3.H2O (minor product), 2b, all with pentagonal bipyramidal bismuth(III) centers, are depicted with one electron pair (6s2) of the bismuth(III) atom, deprotonated forms of multidentate thiosemicarbazone or semicarbazone ligands, and monodentate NO3 or H2O ligands, respectively. These complexes are related to the positional isomers of one electron pair of the bismuth(III) atom; 1 has an electron pair positioned in the pentagonal plane (basal position), while 2a and 2b have an electron pair in the apical position. The monomeric 8-coordinate complex [Bi(mtsc)2(NO3)], 4b, which was obtained by slow evaporation in MeOH of the 1.5 hydrates 4a, was depicted with one electron pair of the bismuth(III) atom, two deprotonated mtsc- ligand and one nitrate ion. On the other hand, crystals of the complex "[Bi(mtsc)Cl2]", 3, prepared by a reaction of BiCl3 with L1 showed several polymorphs (3a, 3b, 3c and 3d) due to coordination and/or solvation of dimethyl sulfoxide (DMSO) used in the crystallization. Bismuth(III) complexes 1 and 4a showed selective and effective antibacterial activities against Gram-positive bacteria. The structure-activity relationship was discussed.  相似文献   

11.
3-Deoxy-D-erythro-hexos-2-ulose bis(thiosemicarbazone) (1) acts as a tetradentate ligand of the N2S2 type which forms stable coordination complexes with metal(II) cations. The Cu(II), Pt(II), and Pd(II) chelates (2, 4, and 6, respectively) of 1 were synthesized and characterized by elemental analysis and NMR spectroscopy. The NMR spectra of the Pt complex (4) showed the coupling of H-1 and C-1, C-2 of the bis(thiosemicarbazone) with 195Pt (33.7% naturally occurring), which supports the structure proposed for the chelate. The complexes 2, 4, and 6 were acetylated to give the corresponding tri-O-acetyl derivatives 3, 5, and 7. Elimination of Cu(II) from 3 with hydrogen sulfide afforded 8, the tri-O-acetyl derivative of 1. Preliminary studies have shown antiviral activity of chelates 2, 4, and 6 against poliovirus type 1.  相似文献   

12.
Complexes of Co(II), Ni(lI), Cu(II), Zn(II) and Pt(II) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H) were prepared and characterized by elemental analyses, conductance measurement and spectral studies. On the basis of these studies a distorted octahedral structure for [Co(1-iqtsc)2]·2H2O, a distorted trigonal-bipyramidal structure for [Ni- (1-iqtsc-H)Cl2], [Cu(1-iqtsc-H)Cl2] and [Zn(1-iqtsc- H)(OAc)2]·H2O and a square-planar structure for [Pt(1-iqtsc)Cl] are suggested. All these metal(II) complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. Except for Pt(Il), the complexes were found to possess significant activity; the Ni(II) complex showed a T/C value of 161 at the optimum dosage.  相似文献   

13.
The synthetic, spectroscopic, and biological studies of Cu(II), Ni(II), Zn(II), Co(II), Mn(II), Fe(III) and Cr(III) complexes of N(4)-(7'-chloroquinolin-4'-ylamino)-N(1)-(2-hydroxy-benzylidene)thiosemicarbazone (HL) obtained by the reaction of N(4)-(7'-chloroquinolin-4'-ylamino)thiosemicarbazide with 2-hydroxybenzaldehyde. The structures of the complexes were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, (1)H and (13)C NMR and Mass spectra) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed the non-electrolytic nature of the complexes. The resulting colored products are mononuclear in nature. On the basis of the above studies, only one ligand was suggested to be coordinated to each metal atom by thione sulfur, azomethine nitrogen and phenolic oxygen to form mononuclear complexes in which the thiosemicarbazone behaves as a monobasic tridendate ligand. The ligand and its metal complexes were tested against Gram + ve bacteria (Staphylococcus aureus), Gram - ve bacteria (Escherichia coli), fungi (Candida albicans) and (Fusarium solani). The tested compounds exhibited significant activity.  相似文献   

14.
The reaction of zinc(II) chloride, cadmium(II) chloride and bromide with 3-thiophene aldehyde thiosemicarbazone leads to the formation of a series of new complexes. They have been characterized by spectroscopic studies: infrared, 1H NMR, and electronic spectra. The crystal structures of the compound [ZnCl2(3TTSCH)2] and [CdBr2(3TTSCH)2] have been determined by X-ray diffraction methods. For the complexes [ZnCl2(3TTSCH)2] and [CdBr2(3TTSCH)2], the central ion is coordinated through the sulfur, and for the complexes [CdCl2(3TTSCH)], [CdBr2(3TTSCH)] the ion is coordinated through the sulfur as well as azomethine nitrogen atom of the thiosemicarbazone. In addition, fungistatic and bacteriostatic activities of both ligand and complexes have been evaluated. Cadmium(II) complexes have shown the most significant activities.  相似文献   

15.
Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper(II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron(II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical.  相似文献   

16.
With exposure to trace amounts of air and moisture, the Cr2(II, II) complex Cr2(μ-3,5Cl2-form)4, where 3,5Cl2-form is [(3,5-Cl2C6H3)NC(H)N(3,5-Cl2C6H3)], undergoes an oxidative addition reaction. Structural information from the X-ray crystal structure of the edge-sharing bioctahedral (ESBO) Cr2(III, III) product Cr2(μ-OH)2(μ-3,5Cl2-form)22-3,5Cl2-form)2 (1) indicates 1 has a significantly longer Cr–Cr distance [2.732(2) Å] than Cr2(μ-3,5Cl2-form)4 [1.9162(10) Å], but the shortest Cr–Cr distance in an ESBO Cr2(III, III) complex recorded to date.  相似文献   

17.
The crystal structure of hexaaquamanganese(II) bis{bis(N-salicylideneglycinato)manganate(III)} dihydrate has been determined by X-ray analysis. The complex crystallizes in the monoclinic space group I2|a, with unit-cell dimensions a = 37.431(5), b = 12.100(1), c = 9.448(1) Å, β = 92.31(1)°. The structure was deduced by the direct method and refined by the block-diagonal least-squares technique to a final R value of 0.062 for 3904 observed reflections. The Mn(II) is octahedrally ligated by six water molecules, while Mn(III) is octahedrally chelated by two salicylideneglycinate ligands, of which one is nearly planar and the other considerably bent.It was discovered that the crystal is, as a whole, of a ‘sandwich’ structure made of one central sheet containing hexaaquamanganese(II)'s and the water molecules of crystallization, and two outside sheets containing bis(N-salicylideneglycinato)manganate(III)'s.  相似文献   

18.
Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone and that of 2,2′-bipyridyl-6-carbothioamide. Experiments on generation of oxidative stress and the influence of biologically relevant reductants (glutathione, ascorbic acid) on the anticancer activity of the copper complexes revealed that reductant-dependent redox cycling occurred mainly outside the cells, leading to generation and dismutation of superoxide radicals resulting in cytotoxic amounts of H2O2. However, without extracellular reductants only weak intracellular ROS generation was observed at IC50 levels, suggesting that cellular thiols are not involved in copper-complex-induced oxidative stress. Taken together, thiol-induced intracellular ROS generation might contribute to the anticancer activity of copper thiosemicarbazone complexes but is not the determining factor.  相似文献   

19.
New Ni(II) thiosemicarbazone complexes containing triphenylphosphine namely [Ni(Sal-mtsc)(PPh3)](2) and [Ni(Nap-mtsc)(PPh3)] (3) (where Sal-mtsc = salicylaldehyde-N(4)-methylthiosemicarbazone and Nap-mtsc = 2-hydroxy-1-naphthaldehyde-N(4)-methylthiosemicarbazone) have been synthesised and characterized by elemental analysis, IR, electronic and 1H NMR spectroscopy. The crystal structures of the complexes have been determined by single crystal X-ray diffraction technique. In all the complexes the thiosemicarbazone ligand coordinated to nickel through ONS mode. The electrochemical behavior of the complexes has been investigated by using cyclic voltammetry in acetonitrile. The new complexes were subjected to test their DNA topoisomerase II inhibition efficiency. The complex [Ni(Nap-mtsc)(PPh3)] (3) showed 95% inhibition. The observed inhibition activity was found to be more potent than the activity of conventional standard Nalidixic acid.  相似文献   

20.
The solid-state structures of 6-(1-methylbenzimidazol-2-yl)-1H-pyridin-2-one (HL) and the copper(II) complex [Cu(L)2(OH2)]·2H2O (1) are established by X-ray crystallography and also by means of physicochemical and spectroscopic methods. The molecules of HL form a self-complementary head-to-tail hydrogen-bonded dimer through C-H?N and C-H?O contacts to give an infinite 1D chain. The copper(II) complex (1) is five-coordinate with distorted trigonal-bipyramidal (TBP) geometry of the N4O donor atoms. The electronic and EPR data are in agreement with the X-ray structure of 1, showing that HL coordinates to copper(II) centre as a mono-anionic ligand through deprotonated pyridone N atom and the tertiary benzimidazole nitrogen atom to form a neutral complex in which the water molecule occupies the fifth position. The 1D water tape, T4(2)7(2)6(2)7(2) is anchored to the host through hydrogen bonds between coordinated water molecule [O(3w)] as acting double H-donor, pyridone carbonyl groups [O(2) and O(1)] as double H-acceptor and the lattice water molecules [O(4w) and O(5w)] as double H-donor and single H-acceptor).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号