首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major advances have recently been made in our understanding of the mechanisms and functions of amino acid transport in mammalian cells: - from the whole organism to transporter molecular structure. In this article, we present a brief overview of current knowledge concerning amino acid transporters, followed by a detailed discussion of the relevance of this new information to our broader understanding of the physiological regulation of amino acid handling in the kidney. We focus especially on the influence of hormones and xenobiotics on renal amino acid transport systems. In a growing number of cases, it now seems possible to correlate the effects of hormones, drugs, and xenobiotics with the capacity of renal amino acid transporters. This topic is of clinical relevance for the treatment of many amino acid reabsorption disorders. For example, under suitable conditions glucocorticoids and thyroid hormones stimulate renal reabsorption of amino acids and might therefore be of benefit in the treatment of different kinds of aminoaciduria. Hormonal regulation also underlies the postnatal development of renal amino acid reabsorption capacity, which can be stimulated to mature earlier after exogenous administration of e.g. glucocorticoids. In contrast, many compounds (e.g. heavy metal complexes) selectively damage renal amino acid transporters resulting in urinary amino acid loss. These types of phenomena (stimulation or inhibition of amino acid transporters in the kidney) are reviewed from the perspectives of our new molecular understanding of transport processes and of clinical relevance.  相似文献   

2.
The urinary excretion and serum concentration of amino acids were studied in 62 healthy individuals aged 15 to 70 years. In elderly subjects (61-70 years), it was found that renal amino acid clearance per 100 ml GFR (fractional excretion, FE) rose significantly in the following amino acids: CYS, VAL, MET, ILE and LEU. Since the serum concentrations of these amino acids showed no significant changes, but the GFR was reduced, it can be concluded that the raised FE of these amino acids was due to a decrease in their effective tubular reabsorption. A significant correlation was found between FENa and FE of most amino acids including those mentioned above. The findings support the assumption that changes in tubular Na+ transport probably participate in the changes of tubular amino acid transport in elderly individuals.  相似文献   

3.
Amino acid transport across cellular membranes is mediated by multiple transporters with overlapping specificities. We recently have identified the vertebrate proteins which mediate Na+-independent exchange of large neutral amino acids corresponding to transport system L. This transporter consists of a novel amino acid permease-related protein (LAT1 or AmAT-L-lc) which for surface expression and function requires formation of disulfide-linked heterodimers with the glycosylated heavy chain of the h4F2/CD98 surface antigen. We show that h4F2hc also associates with other mammalian light chains, e.g. y+LAT1 from mouse and human which are approximately 48% identical with LAT1 and thus belong to the same family of glycoprotein-associated amino acid transporters. The novel heterodimers form exchangers which mediate the cellular efflux of cationic amino acids and the Na+-dependent uptake of large neutral amino acids. These transport characteristics and kinetic and pharmacological fingerprints identify them as y+L-type transport systems. The mRNA encoding my+LAT1 is detectable in most adult tissues and expressed at high levels in kidney cortex and intestine. This suggests that the y+LAT1-4F2hc heterodimer, besides participating in amino acid uptake/secretion in many cell types, is the basolateral amino acid exchanger involved in transepithelial reabsorption of cationic amino acids; hence, its defect might be the cause of the human genetic disease lysinuric protein intolerance.  相似文献   

4.
The heteromeric amino acid transporters b(0,+)AT-rBAT (apical), y(+)LAT1-4F2hc, and possibly LAT2-4F2hc (basolateral) participate to the (re)absorption of cationic and neutral amino acids in the small intestine and kidney proximal tubule. We show now by immunofluorescence that their expression levels follow the same axial gradient along the kidney proximal tubule (S1>S2S3). We reconstituted their co-expression in MDCK cell epithelia and verified their polarized localization by immunofluorescence. Expression of b(0,+)AT-rBAT alone led to a net reabsorption of l-Arg (given together with l-Leu). Coexpression of basolateral y(+)LAT1-4F2hc increased l-Arg reabsorption and reversed l-Leu transport from (re)absorption to secretion. Similarly, l-cystine was (re)absorbed when b(0,+)AT-rBAT was expressed alone. This net transport was further increased by the coexpression of 4F2hc, due to the mobilization of LAT2 (exogenous and/or endogenous) to the basolateral membrane. In summary, apical b(0,+)AT-rBAT cooperates with y(+)LAT1-4F2hc or LAT2-4F2hc for the transepithelial reabsorption of cationic amino acids and cystine, respectively. The fact that the reabsorption of l-Arg led to the secretion of l-Leu demonstrates that the implicated heteromeric amino acid transporters function in epithelia as exchangers coupled in series and supports the notion that the parallel activity of unidirectional neutral amino acid transporters is required to drive net amino acid reabsorption.  相似文献   

5.
6.
The Madin-Darby canine kidney (MDCK) cell line was investigated with respect to the cellular polarity of amino acid transport in early confluent versus late confluent cultures. Early confluent cultures could take up amino acids from the apical and the basolateral sides of the cell layer via amino acid transport Systems A, ASC, and L. However, in late confluent cultures the activities of Systems A and L were clearly localized to the basolateral surface of the cell monolayer. In addition to the presence of systems A, ASC, and L, a novel activity, measurable under conditions used for quantitating System ASC, was found to be active in the apical membrane of these cells. This transporter, termed System G (for general), recognized basic and neutral amino acids with high affinity and acidic amino acids with lower affinity. System G exhibited broad substrate specificity, strict cation specificity, and a broad pH optimum with maximal activity at acidic pH. The activity of System G was relatively low after growth in serum-containing medium but was induced in a defined medium. Induction of System G activity was dependent upon the presence of prostaglandin E1. The broad substrate specificity, low pH optimum, and Na+ dependence suggest that System G may function in apical membranes as an energy-dependent transport route during reabsorption of amino acids from the kidney tubule lumen.  相似文献   

7.
This study was undertaken in order to assess the effects of metabolism and complexations with amino acids on the renal uptake of mercury using rat renal cortex slices as the experimental system. Mercury levels attained in the slices after 60 min of incubation were 50% higher with mercuric cysteine than with mercuric chloride. This enhancement of uptake with mercuric cysteine was reduced in the presence of a tenfold molar excess of histidine or lysine, but not by serine. Excess cysteine markedly increased mercury uptake. Incubation at 25 degrees significantly reduced uptake of mercuric cysteine, but not mercuric chloride. Anaerobic conditions and incubation in the presence of DNP each reduced mercuric cysteine uptake to the control level of mercuric chloride without affecting uptake of mercuric chloride. The differential aspects of metabolism on the uptake of mercuric cysteine and mercuric chloride and the competitive effects obtained with amino acids known to compete with cysteine in renal reabsorption support the hypothesis that a portion of the renal uptake of mercury operates through amino acid transport mechanisms acting on mercury-amino acid complexes.  相似文献   

8.
We have identified a new human cDNA, L-amino acid transporter-2 (LAT-2), that induces a system L transport activity with 4F2hc (the heavy chain of the surface antigen 4F2, also named CD98) in oocytes. Human LAT-2 is the fourth member of the family of amino acid transporters that are subunits of 4F2hc. The amino acid transport activity induced by the co-expression of 4F2hc and LAT-2 was sodium-independent and showed broad specificity for small and large zwitterionic amino acids, as well as bulky analogs (e.g. BCH (2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid)). This transport activity was highly trans-stimulated, suggesting an exchanger mechanism of transport. Expression of tagged N-myc-LAT-2 alone in oocytes did not induce amino acid transport, and the protein had an intracellular location. Co-expression of N-myc-LAT-2 and 4F2hc gave amino acid transport induction and expression of N-myc-LAT-2 at the plasma membrane of the oocytes. These data suggest that LAT-2 is an additional member of the family of 4F2 light chain subunits, which associates with 4F2hc to express a system L transport activity with broad specificity for zwitterionic amino acids. Human LAT-2 mRNA is expressed in kidney > placenta > brain, liver > spleen, skeletal muscle, heart, small intestine, and lung. Human LAT-2 gene localizes at chromosome 14q11.2-13 (13 cR or approximately 286 kb from marker D14S1349). The high expression of LAT-2 mRNA in epithelial cells of proximal tubules, the basolateral location of 4F2hc in these cells, and the amino acid transport activity of LAT-2 suggest that this transporter contributes to the renal reabsorption of neutral amino acids in the basolateral domain of epithelial proximal tubule cells.  相似文献   

9.
Summary. The effects of sodium dichromate (chromate; 1 mg/100 g b. wt. s.c.) and cisdiamminedichloroplatinum(II) (CP; 0.6 mg/100 g b. wt. i.p.) on renal amino acid excretion and plasma amino acid composition were investigated in 10- and 55-day-old anaesthetised rats. On the basis of diuresis experiments on conscious rats the mentioned doses and times (1st day after chromate in both age groups and in 10-day-old rats after CP and 3rd day after CP in adult rats) were found out to be optimal for the characterisation of amino acid transport after heavy metal poisoning. Interestingly, in conscious 10-day-old rats chromate nephrotoxicity is not detectable after 1 mg/100 g b. wt. whereas all of the other experimental groups showed nephrotoxic effects of chromate and CP in conscious rats. Urine volumes are lower, but not significantly, in anaesthetised immature rats, independently of the administered nephrotoxin. But GFR is significantly lower in 10-day-old rats, both in controls and after CP, whereas after chromate GFR is significantly reduced only in adult rats and age differences disappeared. In principle the renal fractional excretion (FE) of amino acids was distinctly higher in immature rats as a sign of lower amino acid reabsorption capacity. Nevertheless, the amino acid plasma concentrations were relatively high in immature rats. However, both chromate and CP did not distinctly influence amino acid plasma concentrations. But in both age groups the administration of chromate and CP significantly decreased amino acid reabsorption capacity (increase in FE) as a sign of nephrotoxicity, most pronounced in adult rats after CP. The investigation of renal amino acid handling confirms (1) that both CP and chromate are nephrotoxins, (2) that CP was more nephrotoxic in 55-day-old animals compared to immature rats as could be demonstrated before using other parameters for nephrotoxicity testing and showed (3) that determination of renal amino acid handling is a highly sensitive marker for nephrotoxicity testing, especially in immature rats. Received March 3, 2000 Accepted October 11, 2000  相似文献   

10.
Two transport systems for neutral amino acids have been characterised in LLC-PK1 cells. The first, which transport alanine in a sodium-dependent manner, also mediates alanine exchange and is preferentially inhibited by serine, cysteine, and α-amino-n-butyric acid. This system resembles the ASC system in Ehrlich ascites and some other cell types. There is only a small contribution of other systems to alanine uptake. The second, which transports leucine with no requirement for sodium and mediates leucine exchange, is blocked by 2-aminonorbornane-2-carboxylic acid and hydrophobic amino acids. This system is similar to the L system described in other cell types. LLC-PK1 cells retain several other features implying renal proximal tubule origin; our results thus suggest that these transport systems may be involved in the reabsorption of neutral amino acids by the nephron in vivo.  相似文献   

11.
The initiation of growth of a polyaromatic auxotrophic mutant of Saccharomyces cerevisiae was inhibited by several amino acids, whereas growth of the parent prototroph was unaffected. A comparative investigation of amino acid transport in the two strains employing (14)C-labeled amino acids revealed that the transport of amino acids in S. cerevisiae was mediated by a general transport system responsible for the uptake of all neutral as well as basic amino acids. Both auxotrophic and prototrophic strains exhibited stereospecificity for l-amino acids and a K(m) ranging from 1.5 x 10(-5) to 5.0 x 10(-5) M. Optimal transport activity occurred at pH 5.7. Cycloheximide had no effect on amino acid uptake, indicating that protein synthesis was not a direct requirement for amino acid transport. Regulation of amino acid transport was subject to the concentration of amino acids in the free amino acid pool. Amino acid inhibition of the uptake of the aromatic amino acids by the aromatic auxotroph did not correlate directly with the effect of amino acids on the initiation of growth of the auxotroph but provides a partial explanation of this effect.  相似文献   

12.
The existence of active transport systems (permeases) operating on amino acids in the photoautotrophic cyanobacterium Synechocystis sp. strain 6803 was demonstrated by following the initial rates of uptake with 14C-labeled amino acids, measuring the intracellular pools of amino acids, and isolating mutants resistant to toxic amino acids. One class of mutants (Pfa1) corresponds to a regulatory defect in the biosynthesis of the aromatic amino acids, but two other classes (Can1 and Aza1) are defective in amino acid transport. The Can1 mutants are defective in the active transport of three basic amino acids (arginine, histidine, and lysine) and in one of two transport systems operating on glutamine. The Aza1 mutants are not affected in the transport of the basic amino acids but have lost the capacity to transport all other amino acids except glutamate. The latter amino acid is probably transported by a third permease which could be identical to the Can1-independent transport operating on glutamine. Thus, genetic evidence suggests that strain 6803 has only a small number of amino acid transport systems with fairly broad specificity and that, with the exception of glutamine, each amino acid is accumulated by only one major transport system. Compared with heterotrophic bacteria such as Escherichia coli, these permeases are rather inefficient in terms of affinity (apparent Km ranging from 6 to 60 microM) and of Vmax.  相似文献   

13.
The general amino acid permease, Gap1p, of Saccharomyces cerevisiae transports all naturally occurring amino acids into yeast cells for use as a nitrogen source. Previous studies have shown that a nonubiquitinateable form of the permease, Gap1p(K9R,K16R), is constitutively localized to the plasma membrane. Here, we report that amino acid transport activity of Gap1p(K9R,K16R) can be rapidly and reversibly inactivated at the plasma membrane by the presence of amino acid mixtures. Surprisingly, we also find that addition of most single amino acids is lethal to Gap1p(K9R,K16R)-expressing cells, whereas mixtures of amino acids are less toxic. This toxicity appears to be the consequence of uptake of unusually large quantities of a single amino acid. Exploiting this toxicity, we isolated gap1 alleles deficient in transport of a subset of amino acids. Using these mutations, we show that Gap1p inactivation at the plasma membrane does not depend on the presence of either extracellular or intracellular amino acids, but does require active amino acid transport by Gap1p. Together, our findings uncover a new mechanism for inhibition of permease activity in response to elevated amino acid levels and provide a physiological explanation for the stringent regulation of Gap1p activity in response to amino acids.  相似文献   

14.
植物对重金属的吸收和分布   总被引:68,自引:2,他引:68  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合脓等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子方面的研究进展。  相似文献   

15.
16.
植物对重金属的吸收和分布   总被引:3,自引:0,他引:3  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植 物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐 重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合肽等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子 方面的研究进展。  相似文献   

17.
Summary Heterotrophic microorganisms are able to solubilize metals via excreted metabolites-most often di- or tricarboxylic acids but also amino acids. With amino acids Cu, Zn, Au, Ni, U, Hg and Sb have been solubilized from metal oxides, metal sulfides or elementary metals. In this work it was investigated if excreted amino acids play a role in the leaching of zinc from a zinc oxide containing industrial filter dust. Two bacteria-Pseudomonas putida andCorynebacterium glutamicum-and a fungus-Penicillium simplicissimum were used.P. putida andP. Simplicissimum have already been used to solubilize zinc oxide, whereasC. glutamicum was used because of its known ability to excrete amino acids. Amino acids in culture fluids were analyzed via derivatization with phenyl isothiocyanate, separation on a RP-18 column and UV-detection. All three microorganisms solubilized zinc from the filter dust and excreted much more citric acid than amino acids. Thus citric acid rather than amino acids was regarded to be the leaching agent. Of the two bacteriaP. putida was more resistant towards the heavy metalcontaining filter dust.  相似文献   

18.
Preimplantation mouse blastocysts were found to contain at least three mediated components of Na+-independent amino acid transport. The two less conspicuous components seemed to be selective for either cationic or zwitterionic substrates but were not characterized further or examined for multiple transport activities. L-Leucine and L-lysine competed strongly for uptake by the most conspicuous Na+-independent transport process detected in these conceptuses (referred to as component b0,+), and no further heterogeneity of transport activities was found within this component. A series of inhibitors of various strengths had about the same effect on component b0,+ when either leucine or lysine was the substrate, and uptake of each substrate was not affected significantly by changes in the pH between 6.3 and 8.0. Furthermore, the Ki values for mutually competitive inhibition of transport between leucine and lysine and their Km values for transport via component b0,+ were all on the order of about 100 microM. In addition, the Ki values for competitive inhibition of leucine or lysine uptake by valine were approximately 5 mM in both cases, and alanine appeared to be a similarly weak competitive inhibitor of leucine transport. Based on these results, component b0,+ prefers to interact with bulky amino acids that do not branch at the beta-carbon. Moreover, amino acids that branch at the alpha-carbon, such as the leucine analog 3-amino-endo-bicyclo[3.2.1]octane-3-carboxylic acid, were virtually excluded by this component. The substrate reactivity of component b0,+ is more limited than the Na+-dependent transport system B0,+ in blastocysts which accepts both these branched species and less bulky amino acids relatively well as substrates. Thus, mediated amino acid transport in the mouse trophoblast is clearly distinguishable from that in most other mammalian tissues that have been studied. Not only do component b0,+ and system B0,+ and system B0,+ fail to discriminate strongly between basic and zwitterionic substrates, but their relative reactivity with bicyclic amino acids, such as 3-amino-endo-bicyclo[3.2.1]octane-3-carboxylic acid, is the reverse of transport processes in other cell types where these amino acids react strongly with Na+-independent, but not Na+-dependent, systems.  相似文献   

19.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

20.
Summary In adult female rats, the influence of dexamethasone or triiodothyronine on renal amino acid handling was investigated in amino acid loaded animals. Amino acids were administered intravenously as two mixtures, each containing four amino acids to overload amino acid reabsorption capacity. Bolus injections of both mixtures were followed by temporary increase in fractional excretion of the administered amino acids as well of the amino acids which were not covered in the mixtures. The administration of the two mixtures was followed by different interactions between various amino acid carriers.After dexamethasone pretreatment (60µg/100g b.wt. for 3 days, once daily) a stimulation of the renal amino acid handling could be shown. Triiodothyronine (20µg/100g b.wt. for 3 days, once daily) did not increase tubular reabsorption capacity for amino acids. It even increased fractional amino acid excretion in amino acid loaded rats as a sign of enhanced amino acid metabolism in the kidney and/or increased amino acid uptake into the tubular cells from the luminal site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号