首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The de novo molecular design program SPROUT has been applied to the X-ray crystal structures of Plasmodium and human dihydroorotate dehydrogenase, respectively. The resulting design templates were used to prepare a series of molecules which, in keeping with predictions, showed useful levels of species-selective enzyme inhibition.  相似文献   

2.
A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.  相似文献   

3.
Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts.  相似文献   

4.
Malaria remains a global public health burden with significant mortality and morbidity. Despite the several approved drugs available for its management, the parasite has developed resistance to virtually all known antimalarial drugs. The development of a new drug that can combat resistant to Artemisinin based Combination Therapies (ACTs) for malaria is imperative. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a flavin-dependent mitochondrial enzyme is vital in the parasite''s pyrimidine biosynthesis is a well-known drug target. Therefore, it is of interest to document the MOLECULAR DOCKING analysis (using Maestro, Schrodinger) data of DIHYDROOROTATE DEHYDROGENASE PfDHODH from P. falciparum towards the design of effective inhibitors. The molecular docking features of 10 compounds with reference to chloroquine with PfDHODH are documented in this report for further consideration.  相似文献   

5.
Plasmodium falciparum is the causative agent of the most serious and fatal malarial infections, and it has developed resistance to commonly employed chemotherapeutics. The de novo pyrimidine biosynthesis enzymes offer potential as targets for drug design, because, unlike the host, the parasite does not have pyrimidine salvage pathways. Dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme that catalyzes the fourth reaction in this essential pathway. Coenzyme Q (CoQ) is utilized as the oxidant. Potent and species-selective inhibitors of malarial DHODH were identified by high-throughput screening of a chemical library, which contained 220,000 drug-like molecules. These novel inhibitors represent a diverse range of chemical scaffolds, including a series of halogenated phenyl benzamide/naphthamides and urea-based compounds containing napthyl or quinolinyl substituents. Inhibitors in these classes with IC(50) values below 600 nm were purified by high pressure liquid chromatography, characterized by mass spectroscopy, and subjected to kinetic analysis against the parasite and human enzymes. The most active compound is a competitive inhibitor of CoQ with an IC(50) against malarial DHODH of 16 nm, and it is 12,500-fold less active against the human enzyme. Site-directed mutagenesis of residues in the CoQ-binding site significantly reduced inhibitor potency. The structural basis for the species selective enzyme inhibition is explained by the variable amino acid sequence in this binding site, making DHODH a particularly strong candidate for the development of new anti-malarial compounds.  相似文献   

6.
N-phenyl ureidobenzenesulfonates (PUB-SOs) is a new class of promising anticancer agents inducing replication stresses and cell cycle arrest in S-phase. However, the pharmacological target of PUB-SOs was still unidentified. Consequently, the objective of the present study was to identify and confirm the pharmacological target of the prototypical PUB-SO named 2-ethylphenyl 4-(3-ethylureido)benzenesulfonate (SFOM-0046) leading to the cell cycle arrest in S-phase. The antiproliferative and the cytotoxic activities of SFOM-0046 were characterized using the NCI-60 screening program and its fingerprint was analyzed by COMPARE algorithm. Then, human dihydroorotate dehydrogenase (hDHODH) colorimetric assay, uridine rescuing cell proliferation and molecular docking in the brequinar-binding site were performed. As a result, SFOM-0046 exhibited a mean antiproliferative activity of 3.5 μM in the NCI-60 screening program and evidenced that leukemia and colon cancer cell panels were more sensitive to SFOM-0046. COMPARE algorithm showed that the SFOM-0046 cytotoxic profile is equivalent to the ones of brequinar and dichloroallyl lawsone, two inhibitors of hDHODH. SFOM-0046 inhibited the hDHODH in the low nanomolar range (IC50 = 72 nM) and uridine rescued the cell proliferation of HT-29, HT-1080, M21 and MCF-7 cancer cell lines in the presence of SFOM-0046. Finally, molecular docking showed a binding pose of SFOM-0046 interacting with Met43 and Phe62 present in the brequinar-binding site. In conclusion, PUB-SOs and notably SFOM-0046 are new small molecules hDHODH inhibitors triggering replication stresses and S-phase arrest.  相似文献   

7.
J Biro  S Fabry  W Dietmaier  C Bogedain  R Hensel 《FEBS letters》1990,275(1-2):130-134
Construction of hybrid enzymes between the glyceraldehyde-3-phosphate dehydrogenases from the mesophilic Methanobacterium bryantii and the thermophilic Methanothermus fervidus by recombinant DNA techniques revealed that a short C-terminal fragment of the Mt. fervidus enzyme contributes largely to its thermostability. This C-terminal region appears to be homologous to the alpha 3-helix of eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenases which is involved in the contacts between the two domains of the enzyme subunit. Site-directed mutagenesis experiments indicate that hydrophobic interactions play an important role in these contacts.  相似文献   

8.
Two new tricyclic β-aminoacrylate derivatives (2e and 3e) have been found to be inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) with Ki 0.037 and 0.15 μM respectively. 1H and 13C NMR spectroscopic data show that these compounds undergo ready cis-trans isomerisation at room temperature in polar solvents. In silico docking studies indicate that for both molecules there is neither conformation nor double bond configuration which bind preferentially to PfDHODH. This flexibility is favourable for inhibitors of this channel that require extensive positioning to reach their binding site.  相似文献   

9.
微生物来源的二氢乳清酸脱氢酶抑制剂F01WB-1315A,B   总被引:1,自引:0,他引:1  
摘要:目的 从微生物次生代谢产物中筛选免疫相关疾病治疗药物重要靶点—-二氢乳清酸脱氢酶的抑制剂。方法 利用自建的快速、高效的二氢乳清酸脱氢酶抑制剂的高通量筛选方法,从4560株真菌菌株中筛选阳性菌株。阳性菌株的发酵产物进行分离纯化获得活性化合物,再通过对活性化合物的紫外、质谱、核磁等理化数据的分析进行结构鉴定。结果 筛选分离得到2个活性化合物F01WB-1315A和F01WB-1315B。F01WB-1315A对二氢乳清酸脱氢酶有强的抑制活性,IC50=0.07 μg/mL,于20 μg/mL浓度下对体外  相似文献   

10.
Knecht W  Löffler M 《FEBS letters》2000,467(1):27-30
Mitochondrial dihydroorotate dehydrogenase (DHOdehase; EC 1.3.99.11) is a target of anti-proliferative, immunosuppressive and anti-parasitic agents. Here, redoxal, (2,2'-[3,3'-dimethoxy[1, 1'-biphenyl]-4,4'-diyl)diimino]bis-benzoic acid, was studied with isolated mitochondria and the purified recombinant human and rat enzyme to find out the mode of kinetic interaction with this target. Its pattern of enzyme inhibition was different from that of cinchoninic, isoxazol and naphthoquinone derivatives and was of a non-competitive type for the human (K(ic)=402 nM; K(iu)=506 nM) and the rat enzyme (K(ic)=116 nM; K(iu)=208 nM). The characteristic species-related inhibition of DHOdehase found with other compounds was less expressed with redoxal. In human and rat mitochondria, redoxal did not inhibit NADH-induced respiration, its effect on succinate-induced respiration was marginal. This was in contrast to the sound effect of atovaquone and dichloroallyl-lawsone, studied here for comparison. In human mitochondria, the IC(50) value for the inhibition of succinate-induced respiration by atovaquone was 6.1 microM and 27.4 microM for the DHO-induced respiration; for dichlorallyl-lawsone, the IC(50) values were 14.1 microM and 0.23 microM.  相似文献   

11.
Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases.  相似文献   

12.
The survival of the malaria parasite Plasmodium falciparum is dependent upon the de novo biosynthesis of pyrimidines. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in this pathway in an FMN-dependent reaction. The full-length enzyme is associated with the inner mitochondrial membrane, where ubiquinone (CoQ) serves as the terminal electron acceptor. The lipophilic nature of the co-substrate suggests that electron transfer to CoQ occurs at the two-dimensional lipid-solution interface. Here we show that PfDHODH associates with liposomes even in the absence of the N-terminal transmembrane-spanning domain. The association of a series of ubiquinone substrates with detergent micelles was studied by isothermal titration calorimetry, and the data reveal that CoQ analogs with long decyl (CoQ(D)) or geranyl (CoQ(2)) tails partition into detergent micelles, whereas that with a short prenyl tail (CoQ(1)) remains in solution. PfDHODH-catalyzed reduction of CoQ(D) and CoQ(2), but not CoQ(1), is stimulated as detergent concentrations (Tween 80 or Triton X-100) are increased up to their critical micelle concentrations, beyond which activity declines. Steady-state kinetic data acquired for the reaction with CoQ(D) and CoQ(2) in substrate-detergent mixed micelles fit well to a surface dilution kinetic model. In contrast, the data for CoQ(1) as a substrate were well described by solution steady-state kinetics. Our results suggest that the partitioning of lipophilic ubiquinone analogues into detergent micelles needs to be an important consideration in the kinetic analysis of enzymes that utilize these substrates.  相似文献   

13.
Dihydroorotate dehydrogenase has been purified 6,000-fold from bovine liver mitochondria to apparent homogeneity in six steps. Electrophoretic migration of the homogeneous enzyme on sodium dodecyl sulfate-polyacrylamide gels reveals a subunit Mr of 42,000. By contrast to the well-characterized, cytosolic dihydroorotate oxidases (EC 1.3.3.1), the purified bovine dehydrogenase is a dihydroorotate:ubiquinone oxidoreductase. Maximal rates of orotate formation are obtained using coenzymes Q6 or Q7 as cosubstrate electron acceptors. Concomitant with substrate oxidation, the enzyme will reduce simple quinones, such as benzoquinone, but at significantly lower rates (10-15%) than that obtained for reduction of coenzyme Q6. Enzyme-catalyzed substrate oxidation is not supported by molecular oxygen. The specificity of the purified enzyme for dihydropyrimidine substrates has also been explored. The methyl-, ethyl-, t-butyl-, and benzyl-S-dihydroorotates are substrates, but 1- and 3-methyl and 1,3-dimethyl methyl-S-dihydroorotates are not. Competitive inhibitors include product orotate, 5-methyl orotate, and racemic cis-5-methyl dihydroorotate.  相似文献   

14.
A full-length dihydroorotate dehydrogenase (DHODase) sequence was cloned from a Toxoplasma gondii tachyzoite cDNA library. The sequence was most similar to family 2 DHODases, and had a calculated molecular mass of 65.1 kDa. The full-length and two N-terminally truncated T. gondii DHODase sequences were expressed as recombinant proteins. One of the truncated sequences complemented a DHODase-deficient bacterial host.  相似文献   

15.
BACKGROUND: Dihydroorotate dehydrogenase (DHODH) catalyzes the fourth committed step in the de novo biosynthesis of pyrimidines. As rapidly proliferating human T cells have an exceptional requirement for de novo pyrimidine biosynthesis, small molecule DHODH inhibitors constitute an attractive therapeutic approach to autoimmune diseases, immunosuppression, and cancer. Neither the structure of human DHODH nor any member of its family was known. RESULTS: The high-resolution crystal structures of human DHODH in complex with two different inhibitors have been solved. The initial set of phases was obtained using multiwavelength anomalous diffraction phasing with selenomethionine-containing DHODH. The structures have been refined to crystallographic R factors of 16.8% and 16.2% at resolutions of 1. 6 A and 1.8 A for inhibitors related to brequinar and leflunomide, respectively. CONCLUSIONS: Human DHODH has two domains: an alpha/beta-barrel domain containing the active site and an alpha-helical domain that forms the opening of a tunnel leading to the active site. Both inhibitors share a common binding site in this tunnel, and differences in the binding region govern drug sensitivity or resistance. The active site of human DHODH is generally similar to that of the previously reported bacterial active site. The greatest differences are that the catalytic base removing the proton from dihydroorotate is a serine rather than a cysteine, and that packing of the flavin mononucleotide in its binding site is tighter.  相似文献   

16.
The inactivation of dihydroorotate dehydrogenase by gamma irradiation in dilute aqueous solution has been investigated. The activity of the enzyme decreased exponentially as a function of the absorbed dose under aerated and nitrous oxide-saturated conditions. The contributions of the individual radical species derived from water radiolysis were estimated from the inactivation results observed under aerated, argon-saturated, and nitrous oxide-saturated conditions. The hydrogen atom and hydroxyl radical were found to be important in enzyme inactivation. The effect of selected inorganic radical anions such as Br.2-, I.2-, and (SCN).2- on the enzyme activity was also studied, and the results implicate the possible involvement of cysteine and tyrosine residues in the catalytic activity of dihydroorotate dehydrogenase. Changes in the kinetic parameters (Michaelis-Menten constant, Km, and maximal velocity, Vmax) due to irradiation under the conditions investigated suggest that radiation-induced inactivation is due to modification of the substrate binding sites and that of the active site residues in the enzyme. Evidence for the reduction of iron-sulfur centers in the enzyme during the inactivation process has been put forward from the difference spectrum of the irradiated dihydroorotate dehydrogenase. It has also been shown by electrophoretic studies that radiation-induced inactivation was not due to any fragmentation of the protein structure or the formation of any intermolecular crosslinking.  相似文献   

17.
The small and highly electronegative fluorine atom can play a remarkable role in medicinal chemistry. Selective installation of fluorine into a therapeutic or diagnostic small molecule candidate can enhance a number of pharmacokinetic and physicochemical properties such as improved metabolic stability and enhanced membrane permeation. Increased binding affinity of fluorinated drug candidates to target protein has also been documented in a number of cases. A further emerging application of the fluorine atom is the use of 18F as a radiolabel tracer atom in the exquisitely sensitive technique of Positron Emission Tomography (PET) imaging. This short review aims to bring together these various aspects of the use of fluorine in medicinal chemistry applications, citing selected examples from across a variety of therapeutic and diagnostic settings. The increasingly routine incorporation of fluorine atom(s) into drug candidates suggests a bright future for fluorine in drug discovery and development. A major challenge moving forward will be how and where to install fluorine in a rational sense to best optimise molecular properties.  相似文献   

18.
Yeast dihydroorotate dehydrogenase (DHOD) was purified 2800-fold to homogeneity from its natural source. Its sequence is 70% identical to that of the Lactococcus lactis DHOD (family IA) and the two active sites are nearly the same. Incubations of the yeast DHOD with dideuterodihydroorotate (deuterated in the positions eliminated in the dehydrogenation) as the donor and [14C]orotate as the acceptor revealed that the C5 deuteron exchanged with H2O solvent at a rate equal to the 14C exchange rate, whereas the C6 deuteron was infrequently exchanged with H2O solvent, thus indicating that the C6 deuteron of the dihydroorotate is sticky on the flavin cofactor. The pH dependencies of the steady-state parameters (k(cat) and k(cat)/Km) are similar, indicating that k(cat)/Km reports the productive binding of substrate, and the parameters are dependent on the donor-acceptor pair. The lower pKa values for k(cat) and k(cat)/Km observed for substrate dihydroorotate (around 6) in comparison to the values determined for dihydrooxonate (around 8) suggest that the C5 pro S hydrogen atom of dihydroorotate (but not the analogous hydrogen of dihydrooxonate), which is removed in the dehydrogenation, assists in lowering the pKa of the active site base (Cys133). The pH dependencies of the kinetic isotope effects on steady-state parameters observed for the dideuterated dihydroorotate are consistent with the dehydrogenation of substrate being rate limiting at low pH values, with a pKa value approximating that assigned to Cys133. Electron acceptors with dihydroorotate as donor were preferred in the following order: ferricyanide (1), DCPIP (0.54), Qo (0.28), fumarate (0.15), and O2 (0.035). Orotate inhibition profiles versus varied concentrations of dihydroorotate with ferricyanide or O2 as acceptors suggest that both orotate and dihydroorotate have significant affinities for the reduced and oxidized forms of the enzyme.  相似文献   

19.
V Hines  M Johnston 《Biochemistry》1989,28(3):1222-1226
The steady-state kinetic mechanism of highly purified bovine liver mitochondrial dihydroorotate dehydrogenase has been investigated. Initial velocity analysis using S-dihydroorotate and coenzyme Q6 revealed parallel-line, double-reciprocal plots, indicative of a ping-pong mechanism. The dead-end inhibition pattern with barbituric acid and the reactions with alternate cosubstrates methyl-S-dihydroorotate and menadione also point to a ping-pong mechanism. However, product orotate was found to be competitive with dihydroorotate and uncompetitive with Q6. These findings suggest that dihydroorotate dehydrogenase may follow a nonclassical, two-site ping-pong mechanism, typical of an enzyme that contains two non-overlapping and kinetically isolated substrate binding sites. That these two sites communicate by an intramolecular electron-transfer system involving FMN and perhaps an iron-sulfur center is also suggested by the kinetic behavior of the enzyme.  相似文献   

20.
The flavoenzymes dihydroorotate dehydrogenases (DHODs) catalyze the fourth and only redox step in the de novo biosynthesis of UMP. Enzymes belonging to class 2, according to their amino acid sequence, are characterized by having a serine residue as the catalytic base and a longer N terminus. The structure of class 2 E. coli DHOD, determined by MAD phasing, showed that the N-terminal extension forms a separate domain. The catalytic serine residue has an environment differing from the equivalent cysteine in class 1 DHODs. Significant differences between the two classes of DHODs were identified by comparison of the E. coli DHOD with the other known DHOD structures, and differences with the class 2 human DHOD explain the variation in their inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号