首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We designed three novel cage energetic anions by introducing ionic bridges containing NΘ, N(OΘ) and N(NΘNO2) into cis-2,4,6,8-tetranitro-1H,5H-2,4,6,8- tetraazabicyclo[3.3.0] octane (bicyclo-HMX or BCMHX). The properties of 21 energetic salts, based on cage anions and ammonium-based cations, were studied by density functional theory (DFT) and volume-based thermodynamics (VBT) calculations. Compared to the parent nonionic BCHMX, most title salts have lower predicted impact sensitivities, higher predicted densities, larger predicted heats of formation (HOFs) and better predicted detonation properties. In particular, 11 energetic salts not only exhibit excellent predicted energetic properties, superior to 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20), but also have lower predicted sensitivity than CL-20. The best salt had a predicted detonation velocity of 10.06 km s?1, a predicted detonation pressure of 48.54 GPa and a predicted sensitivity (h50) of 23.99 cm. By introducing ionic bridges into highly nitrated rings, or modifying the original bridge with ionic bridges, some highly nitrated cage compounds with both excellent performance and low sensitivity can be developed strategically.
Graphical abstract Heats of detonation, detonation velocities, and detonation pressures of salts derived from bicyclo-HMX
  相似文献   

2.
Easy methods to study the smart energetic TNT/CL-20 co-crystal   总被引:1,自引:0,他引:1  
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a high-energy nitramine explosive with high mechanical sensitivity. 2,4,6-trinitrotoluene (TNT) is insensitive but by no means a high performance explosive. To reveal the significant importance and smart-material functionality of the energetic-energetic co-crystals, the stability, mechanical and explosive properties TNT/CL-20 co-crystal, TNT crystal and CL-20 crystal were studied. Non-hydrogen bonded non-covalent interactions govern the structures of energetic-energetic co-crystals. However, it is very difficult to accurately calculate the non-covalent intermolecular interaction energies. In this paper, the local conformation and the intricate non-covalent interactions were effectively mapped and analyzed from the electron density (ρ) and its derivatives. The results show that the two components TNT and CL-20 are connected mainly by nitro–aromatic interactions, and nitro–nitro interactions. The steric interactions in TNT/CL-20 could not be confronted with the attractive interactions. Moreover, the scatter graph of TNT crystal reveals the reason why TNT is brittle. The detailed electrostatic potential analysis predicted that the detonation velocities (D) and impact sensitivity for the compounds both increase in the sequence of CL-20 > TNT/CL-20 co-crystal > TNT. Additionally, TNT/CL-20 co-crystal has better malleability than its pure components. This demonstrates the capacity and the feasibility of realizing explosive smart materials by co-crystallization, even if strong hydrogen bonding schemes are generally lacking in energetic materials.
Figure
Scatter graph (left) and gradient isosurface (right) of intermolecular interactions in TNT/CL-20 co-crystal  相似文献   

3.
Two new nitramine compounds containing pyridine, 1,3,5,7-tetranitro-8-(nitromethyl) -4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine and its N-oxide 1,3,5,7-tetranitro-8- (nitromethyl)-4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine-4-ol were proposed. Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures, infrared spectra, and thermodynamic properties at the B3LYP/6-31G* level. Their detonation performances evaluated using the Kamlet-Jacobs equations with the calculated densities and heats of formation are superior to those of HMX. The predicted densities of them were ca. 2 g*cm-3, detonation velocities were over 9 km*s-1, and detonation pressures were about 40 GPa, showing that they may be potential candidates of high energy density materials (HEDMs). The natural bond orbital analysis indicated that N-NO2 bond is the trigger bond during thermolysis process. The stability of the title compounds is slightly lower than that of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20). The results of this study may provide basic information for the molecular design of new HEDMs.  相似文献   

4.
A 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model was constructed to investigate the effect of temperature on cocrystal morphology. A constant volume and temperature molecular dynamics (NVT-MD) simulation was performed on the interfacial model at various temperatures (295–355 K, 20 K intervals). The surface electrostatic potential (ESP) of the CL-20/HMX cocrystal structure and IPA molecule were studied by the B3LYP method at 6–311++G (d, p) level. The surface energies, polarities, adsorption energy, mass density distribution, radial distribution function (RDF), mean square displacement (MSD) and relative changes of attachment energy were analyzed. The results show that polarities of (1 0 0) and (0 1 1) cocrystal surfaces may be more negative and affected by IPA solvent. The adsorption energy per area indicates that growth of the (1 0–2) face in IPA conditions may be more limited, while the (1 0 0) face tends to grow more freely. MSD and diffusion coefficient (D) analyses demonstrated that IPA molecules gather more easily on the cocrystal surface at lower temperatures, and hence have a larger effect on the growth of cocrystal faces. RDF analysis shows that, with the increasing of temperature, the strength of hydrogen bond interactions between cocrystal and solvent becomes stronger, being highest at 335 K for the (1 0 0) and (0 1 1) interfacial models. Results of relative changes of modified attachment energy show that (1 0 0) and (0 1 1) faces tends to be larger than other faces. Moreover, the predicted morphologies at 295 and 355 K are consistent with experimental values, proving that the CL-20/HMX-IPA interfacial model is a reasonable one for this study.
Graphical Abstract Construction of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model, analysis, and morphology prediction of cocrystal.
  相似文献   

5.
The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 ± 0.1 nmol h−1 mg of cell biomass−1 and 11.5 ± 0.4 nmol h−1 mg of protein−1, respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO2), 1.5 molecules of nitrous oxide (N2O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20.  相似文献   

6.
In this work, a CL-20/DNB cocrystal explosive model was established and six different kinds of fluoropolymers, i.e., PVDF, PCTFE, F2311, F2312, F2313 and F2314 were added into the (1 0 0), (0 1 0), (0 0 1) crystal orientations to obtain the corresponding polymer bonded explosives (PBXs). The influence of fluoropolymers on PBX properties (energetic property, stability and mechanical properties) was investigated and evaluated using molecular dynamics (MD) methods. The results reveal a decrease in engineering moduli, an increase in Cauchy pressure (i.e., rigidity and stiffness is lessened), and an increase in plastic properties and ductility, thus indicating that the fluoropolymers have a beneficial influence on the mechanical properties of PBXs. Of all the PBXs models tested, the mechanical properties of CL-20/DNB/F2311 were the best. Binding energies show that CL-20/DNB/F2311 has the highest intermolecular interaction energy and best compatibility and stability. Therefore, F2311 is the most suitable fluoropolymer for PBXs. The mechanical properties and binding energies of the three crystal orientations vary in the order (0 1 0)?>?(0 0 1)?>?(1 0 0), i.e., the mechanical properties of the (0 1 0) crystal orientation are best, and this is the most stable crystal orientation. Detonation performance results show that the density and detonation parameters of PBXs are lower than those of the pure CL-20 and CL-20/DNB cocrystal explosive. The power and energetic performance of PBXs are thus weakened; however, these PBXs still have excellent detonation performance and are very promising. The results and conclusions provide some helpful guidance and novel instructions for the design and manufacture of PBXs.  相似文献   

7.
Biodegradation of the Nitramine Explosive CL-20   总被引:5,自引:2,他引:3       下载免费PDF全文
The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobacterium sp. strain JS71, was isolated from enrichment cultures containing garden soil as an inoculum, succinate as a carbon source, and CL-20 as a nitrogen source. Growth experiments revealed that strain JS71 used 3 mol of nitrogen per mol of CL-20.  相似文献   

8.
The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet–Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.12,8.01,11.02,6.04,13.06,11]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N–NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna21 space group, with cell parameters a?=?12.840 Å, b?=?9.129 Å, c?=?14.346 Å, Z?=?6 and ρ?=?2.292 g·cm?3. Both the detonation velocity of 9.96 km·s?1 and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement.  相似文献   

9.
In a previous study, a marine isolate Clostridium sp. EDB2 degraded 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) under anaerobic conditions (Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004c) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821); however, the enzyme responsible for CL-20 degradation was not known. In the present study, we isolated and purified an enzyme, from strain EDB2, responsible for CL-20 degradation. The enzyme was membrane-associated and NADH-dependent and had a molecular weight of 56 kDa (with SDS-PAGE). N-terminal amino acid sequence of enzyme revealed that it belonged to dehydrogenase class of enzymes. The purified enzyme degraded CL-20 at a rate of 18.5 nmol/h mg protein under anaerobic conditions. Carbon and nitrogen mass balance of the products were 100 and 64%, respectively. In LC–MS–MS studies, we detected three different initial metabolites from CL-20, i.e., mono-nitroso derivative, denitrohydrogenated product, and double-denitrated isomers with molecular weight of 422, 393, and 346 Da, corresponding to presumed empirical formulas of C6H6N12O11, C6H7N11O10, and C6H6N10O8, respectively. Identity of all the three metabolites were confirmed by using ring-labeled [15N]CL-20 and the nitro-group-labeled [15NO2]CL-20. Taken together, the above data suggested that the enzyme degraded CL-20 via three different routes: Route A, via two single electron transfers necessary to release two nitro-groups from CL-20 to produce two double-denitrated isomers; Route B, via a hydride transfer necessary to produce a denitrohydrogenated product; and Route C, via transfer of two redox equivalents to CL-20 necessary to produce a mono-nitroso derivative of CL-20. This is the first biochemical study which showed that CL-20 degradation can be initiated via more than one pathway.  相似文献   

10.
We report herein the structure and explosive properties of the possible isomers of 3-amino-1-nitroso-4-nitrotriazol-5-one-2-oxide computed from the B3LYP/aug-cc-pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazol-5-one-N-oxides were obtained in the ground state. Several designed compounds have densities varying from 2.103 to 2.177 g/cm3. The detonation properties were evaluated by the Kamlet-Jacob equations based on the predicted density and the calculated heat of explosion. The detonation properties of triazol-5-one-N-oxides (D 9.87 to 10.11 km s?1 and P 48.95 to 50.61 GPa) appear to be promising compared with those of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (D 9.20 km s?1, P 42.0 Gpa) and octanitrocubane (D 9.90 km s?1, P 48.45 GPa). The substitution of secondary amino hydrogen of the triazole ring by amino group shows better impact sensitivity/or stability however the model compounds seem to be highly sensitive.  相似文献   

11.
The cyclic nitramine explosive CL-20 (C6H6N12O12, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 -hexaazaisowurtzitane) is a relatively new energetic compound which could be a persistent organic pollutant. To follow its biodegradation dynamics, CL-20 was added to soil alone or together with organic co-substrates and N-source and incubated under oxic and anoxic conditions. Without co-substrates, the CL-20 degradation was detectable only under anoxic conditions. The highest degradation rate was found under aerobic conditions and with the addition of co-substrates, succinate and pyruvate being more efficient than acetate, glucose, starch or yeast extract. When added to intact soil, CL-20 degradation was not affected by the N content, but in soil serially diluted with N-free succinate-mineral medium, the process became N-limited. About 40% of randomly selected bacterial colonies grown on succinate agar medium were able to decompose CL-20. Based on 16S rDNA gene sequence and cell morphology, they were affiliated to Pseudomonas, Rhodococcus, Ochrobactrum, Mycobacterium and Ralstonia. In the pure culture of Pseudomonas sp. MS-P grown on the succinate-mineral N(+) medium, the degradation kinetics were first order with the same apparent kinetic constant throughout growth and decline phases of the batch culture. The observed kinetics agreed with the model that supposes co-metabolic transformation of CL-20 uncoupled from cell growth, which can be carried out by several constitutive cellular enzymes with wide substrate specificity. The GenBank accession numbers for the 16S rRNA gene sequences obtained on this study are AY773005–AY773010. Pseudomonas sp. MS-P (=B-41417) was deposited with Agriculture Research Service Culture Collection, USA.  相似文献   

12.
The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 +/- 0.1 nmol h(-1) mg of cell biomass(-1) and 11.5 +/- 0.4 nmol h(-1) mg of protein(-1), respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO(2)(-)), 1.5 molecules of nitrous oxide (N(2)O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20.  相似文献   

13.
The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobacterium sp. strain JS71, was isolated from enrichment cultures containing garden soil as an inoculum, succinate as a carbon source, and CL-20 as a nitrogen source. Growth experiments revealed that strain JS71 used 3 mol of nitrogen per mol of CL-20.  相似文献   

14.
CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) (C6H6N12O12), a future-generation high-energy explosive, is biodegradable by Pseudomonas sp. strain FA1 and Agrobacterium sp. strain JS71; however, the nature of the enzyme(s) involved in the process was not understood. In the present study, salicylate 1-monooxygenase, a flavin adenine dinucleotide (FAD)-containing purified enzyme from Pseudomonas sp. strain ATCC 29352, biotransformed CL-20 at rates of 0.256 ± 0.011 and 0.043 ± 0.003 nmol min−1 mg of protein−1 under anaerobic and aerobic conditions, respectively. The disappearance of CL-20 was accompanied by the release of nitrite ions. Using liquid chromatography/mass spectrometry in the negative electrospray ionization mode, we detected a metabolite with a deprotonated mass ion [M − H] at 345 Da, corresponding to an empirical formula of C6H6N10O8, produced as a result of two sequential N denitration steps on the CL- 20 molecule. We also detected two isomeric metabolites with [M − H] at 381 Da corresponding to an empirical formula of C6H10N10O10. The latter was a hydrated product of the metabolite C6H6N10O8 with addition of two H2O molecules, as confirmed by tests using 18O-labeled water. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.7 nitrite ions, 3.2 molecules of nitrous oxide, 1.5 molecules of formic acid, and 0.6 ammonium ion. Diphenyliodonium-mediated inhibition of salicylate 1-monooxygenase and a comparative study between native, deflavo, and reconstituted enzyme(s) showed that FAD site of the enzyme was involved in the biotransformation of CL-20 catalyzed by salicylate 1-monooxygenase. The data suggested that salicylate 1-monooxygenase catalyzed two oxygen-sensitive single-electron transfer steps necessary to release two nitrite ions from CL-20 and that this was followed by the secondary decomposition of this energetic chemical.  相似文献   

15.
A series of novel ribavirin hydrazone derivatives were synthesized by the reaction of ribavirin hydrazone with benzaldehyde or acetophenone derivatives. The structures of the compounds were determined by IR, 1H NMR, and HRESIMS. Preliminary biological evaluation showed that one compound (7h) inhibits the growth of A549 cells at 20 μM.  相似文献   

16.
Novel sulfanilamide derivatives were synthesized and evaluated for carbonic anhydrase inhibitory activity as a target for the treatment of glaucoma, and antibacterial properties for use in chemotherapy. Synthesized compounds were characterized by FT-IR, 1H NMR, 13C NMR and photoluminescence. In vitro inhibitory activities were measured by UV-Vis and some of the compounds were found have greater inhibitory effects than the lead compound sulfanilamide. The correlation between inhibitory activity, biological properties and the physicochemical properties of water solubility and partition coefficients was also investigated. Sulfanilamide derivatives gave intense emissions upon irradiation by UV light and a dimethyl substituted compound and a cyclic analog have photoluminescence quantum yields 42% and 31% and long excited-state lifetimes of 3.92 and 2.91 ns, respectively.  相似文献   

17.
A new polynitro cage compound 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15-nonaazaheptcyclo [5.5.1.1(3,11).1(5,9)] pentadecane (NNNAHP) was designed in the present work. Its molecular structure was optimized at the B3LYP/6-31 G(d,p) level of density functional theory (DFT) and crystal structure was predicted using the Compass and Dreiding force fields and refined by DFT GGA-RPBE method. The obtained crystal structure of NNNAHP belongs to the P-1 space group and the lattice parameters are a = 9.99 ?, b = 10.78 ?, c = 9.99 ?, α = 90.01°, β = 120.01°, γ = 90.00°, and Z = 2, respectively. Based on the optimized crystal structure, the band gap, density of state, thermodynamic properties, infrared spectrum, strain energy, detonation characteristics, and thermal stability were predicted. Calculation results show that NNNAHP has detonation properties close to those of CL-20 and is a high energy density compound with moderate stability.  相似文献   

18.
To investigate the larvicidal activities of novel anthraquinones (1a-1k) against Culex quinquefasciatus mosquito larvae. Novel anthraquinones (1a-1k) derivatives were synthesis via condensation method. The compounds were confirmed through FT-IR spectroscopy, 1H & 13C NMR spectrum, and mass spectral studies. The larvicidal activity of compound 1c was highly active LD50 20.92 µg/mL against Culex quinquefasciatus compared standard permethrin with LD50 25.49 µg/mL. Molecular docking studies were carried out for compound 1c against Odorant-binding protein of Culex quinquefasciatus. The compound 1c (−9.8 Kcal/mol) was a potent larvicide with more binding energy than control permethrin (−9.7 Kcal/mol). Therefore, compound (1c) may be more significant inhibitors of mosquito larvicidal.  相似文献   

19.
In this article, different CL-20/FOX-7 cocrystal models were established by the substitution method based on the molar ratios of CL-20:FOX-7. The structures and comprehensive properties, including mechanical properties, stabilities, and energy density, of different cocrystal models were obtained and compared with each other. The main aim was to estimate the influence of molar ratios on properties of cocrystal explosives. The molecular dynamics (MD) simulation results show that the cocrystal model with molar ratio 1:1 has the best mechanical properties and highest binding energy, so the CL-20/FOX-7 cocrystal model is more likely to form in 1:1 M ratio. The detonation parameters show that the cocrystal explosive exhibited preferable energy density and excellent detonation performance. In a word, the 1:1 cocrystal model has the best comprehensive properties, is very promising, and worth more theoretical investigations and experimental tests. This paper gives some original theories to better understand the cocrystal mechanism and provides some helpful guidance and useful instructions to help design CL-20 cocrystal explosives.  相似文献   

20.
A series of purine derivatives with nitramine groups are calculated by using density functional theory (DFT). The molecular theory density, heats of formation, bond dissociation energies and detonation performance are investigated at DFT-B3LYP/6-311G** level. The isodesmic reaction method is employed to calculate the HOFs of the energies obtained from electronic structure calculations. Results show that the position of nitramine groups can influence the values of HOFs. The bond dissociation energies and the impact sensitivity are analyzed to investigate the thermal stability of the purine derivatives. The calculated bond dissociation energies of ring-NHNO2 and NH-NO2 bond show that the NH-NO2 bond should be the trigger bond in pyrolysis processes. The H50 of most compounds are larger than that of CL-20 and RDX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号