首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jiang L  Kuhlman B  Kortemme T  Baker D 《Proteins》2005,58(4):893-904
Water-mediated hydrogen bonds play critical roles at protein-protein and protein-nucleic acid interfaces, and the interactions formed by discrete water molecules cannot be captured using continuum solvent models. We describe a simple model for the energetics of water-mediated hydrogen bonds, and show that, together with knowledge of the positions of buried water molecules observed in X-ray crystal structures, the model improves the prediction of free-energy changes upon mutation at protein-protein interfaces, and the recovery of native amino acid sequences in protein interface design calculations. We then describe a "solvated rotamer" approach to efficiently predict the positions of water molecules, at protein-protein interfaces and in monomeric proteins, that is compatible with widely used rotamer-based side-chain packing and protein design algorithms. Finally, we examine the extent to which the predicted water molecules can be used to improve prediction of amino acid identities and protein-protein interface stability, and discuss avenues for overcoming current limitations of the approach.  相似文献   

2.
Catalytic activity and protein-protein recognition have proven to be significant challenges for computational protein design. Electrostatic interactions are crucial for these and other protein functions, and therefore accurate modeling of electrostatics is necessary for successfully advancing protein design into the realm of protein function. This review focuses on recent progress in modeling electrostatic interactions in computational protein design, with particular emphasis on continuum models.  相似文献   

3.
Computational protein design continues to experience a variety of methodological advances. Several improvements have been suggested for the objective functions used to quantify sequence/structure compatibility. Disparate design strategies based upon dead-end elimination, simulated annealing and statistical design have each recently yielded striking successes involving de novo designed proteins with sizes on the order of 100 residues or greater. Such methods may be used to design new proteins, as well as to redesign natural proteins to facilitate structural and biophysical studies.  相似文献   

4.
Progress in computational protein design   总被引:1,自引:3,他引:1  
Current progress in computational structure-based protein design is reviewed in the areas of methodology and applications. Foundational advances include new potential functions, more efficient ways of computing energetics, flexible treatments of solvent, and useful energy function approximations, as well as ensemble-based approaches to scoring designs for inclusion of entropic effects, improvements to guaranteed and to stochastic search techniques, and methods to design combinatorial libraries for screening and selection. Applications include new approaches and successes in the design of specificity for protein folding, binding, and catalysis, in the redesign of proteins for enhanced binding affinity, and in the application of design technology to study and alter enzyme catalysis. Computational protein design continues to mature and advance.  相似文献   

5.
Proteins are typically represented by discrete atomic coordinates providing an accessible framework to describe different conformations. However, in some fields proteins are more accurately represented as near-continuous surfaces, as these are imprinted with geometric (shape) and chemical (electrostatics) features of the underlying protein structure. Protein surfaces are dependent on their chemical composition and, ultimately determine protein function, acting as the interface that engages in interactions with other molecules. In the past, such representations were utilized to compare protein structures on global and local scales and have shed light on functional properties of proteins. Here we describe RosettaSurf, a surface-centric computational design protocol, that focuses on the molecular surface shape and electrostatic properties as means for protein engineering, offering a unique approach for the design of proteins and their functions. The RosettaSurf protocol combines the explicit optimization of molecular surface features with a global scoring function during the sequence design process, diverging from the typical design approaches that rely solely on an energy scoring function. With this computational approach, we attempt to address a fundamental problem in protein design related to the design of functional sites in proteins, even when structurally similar templates are absent in the characterized structural repertoire. Surface-centric design exploits the premise that molecular surfaces are, to a certain extent, independent of the underlying sequence and backbone configuration, meaning that different sequences in different proteins may present similar surfaces. We benchmarked RosettaSurf on various sequence recovery datasets and showcased its design capabilities by generating epitope mimics that were biochemically validated. Overall, our results indicate that the explicit optimization of surface features may lead to new routes for the design of functional proteins.  相似文献   

6.
Computational protein design can generate proteins not found in nature that adopt desired structures and perform novel functions. Although proteins could, in theory, be designed with ab initio methods, practical success has come from using large amounts of data that describe the sequences, structures, and functions of existing proteins and their variants. We present recent creative uses of multiple-sequence alignments, protein structures, and high-throughput functional assays in computational protein design. Approaches range from enhancing structure-based design with experimental data to building regression models to training deep neural nets that generate novel sequences. Looking ahead, deep learning will be increasingly important for maximizing the value of data for protein design.  相似文献   

7.
The present work deals with the theoretical estimation of ion-pair binding energies and the energetic properties of four ion pairs formed by combining the 1-butyl-2,4-dinitro-3-methyl imidazolium ion with nitrate (I), perchlorate (II), dinitramide (III), or 3,5-dinitro-1,2,4-triazolate (IV) anions. The counterpoise-corrected ion-pair binding energies were calculated for each ion pair at the B3LYP/6-311+G(d,p) level of theory. Results show that the cation–anion interaction is strongest for ion pair I and weakest for IV, indicating that the nitrate (I) has a greater tendency to exist as a stable ionic salt whereas the 3,5-dinitro-1,2,4-triazolate (IV) may exist as an ionic liquid. Natural bond orbital (NBO) analysis and electrostatic potential (ESP) mapping revealed that charge transfer occurs in all of the ion pairs, but is greatest (0.25e) for ion pair I and smallest (0.03e) for IV, resulting in ion pair I being the least polarized. A nucleus-independent chemical shift (NICS) study revealed that the aromaticity of the 1-butyl-2,4-dinitro-3-methyl imidazolium ion significantly increases in ion pair IV, indicating that this has the greatest charge delocalization among all of the four ion pairs considered. Studies of thermodynamic and detonation properties showed that ion pair II is the most energetic ion pair in terms of its detonation velocity (D = 7.5 km s?1) and detonation pressure (P = 23.1 GPa). It is also envisaged that ion pair IV would exist as an energetic azolium azolate type ionic liquid that could be conveniently used as a secondary explosive characterized by detonation parameters D and P of 6.9 km s?1 and 19.3 GPa, respectively. These values are comparable to those of conventional explosives such as TNT.  相似文献   

8.
9.
We report a very fast and accurate physics-based method to calculate pH-dependent electrostatic effects in protein molecules and to predict the pK values of individual sites of titration. In addition, a CHARMm-based algorithm is included to construct and refine the spatial coordinates of all hydrogen atoms at a given pH. The present method combines electrostatic energy calculations based on the Generalized Born approximation with an iterative mobile clustering approach to calculate the equilibria of proton binding to multiple titration sites in protein molecules. The use of the GBIM (Generalized Born with Implicit Membrane) CHARMm module makes it possible to model not only water-soluble proteins but membrane proteins as well. The method includes a novel algorithm for preliminary refinement of hydrogen coordinates. Another difference from existing approaches is that, instead of monopeptides, a set of relaxed pentapeptide structures are used as model compounds. Tests on a set of 24 proteins demonstrate the high accuracy of the method. On average, the RMSD between predicted and experimental pK values is close to 0.5 pK units on this data set, and the accuracy is achieved at very low computational cost. The pH-dependent assignment of hydrogen atoms also shows very good agreement with protonation states and hydrogen-bond network observed in neutron-diffraction structures. The method is implemented as a computational protocol in Accelrys Discovery Studio and provides a fast and easy way to study the effect of pH on many important mechanisms such as enzyme catalysis, ligand binding, protein-protein interactions, and protein stability.  相似文献   

10.
A knowledge-based potential for a rotamer library was developed to design protein sequences. Protein side-chain conformations are represented by 56 templates. Each of their fitness to a given structural site-environment is evaluated by a combined function of the three knowledge-based terms, i.e. two-body side-chain packing, one-body hydration and local conformation. The number of matches between the native sequence and the structural site-environment in the database and that of the virtually settled mismatches, counted in advance, were transformed into the energy scores. In the best-14 test (assessment for the reproduction ability of the native rotamer on its structural site within a quarter of 56 fitness rank positions), the structural stability analysis on mutants of human and T4 lysozymes and the inverse-folding search by a structure profile against the sequence database, this function performs better than the function deduced with the conventional normalization and our previously developed function. Targeting various structural motifs, de novo sequence design was conducted with the function. The sequences thus obtained exhibit reasonable molecular masses and hydrophobic/hydrophilic patterns similar to the native sequences of the target and act as if they were the homologs to the target proteins in BLASTP search. This significant improvement is discussed in terms of the reference state for normalization and the crucial role of short-range repulsion to prohibit residue bumps.  相似文献   

11.
MOTIVATION: The task of engineering a protein to perform a target biological function is known as protein design. A commonly used paradigm casts this functional design problem as a structural one, assuming a fixed backbone. In probabilistic protein design, positional amino acid probabilities are used to create a random library of sequences to be simultaneously screened for biological activity. Clearly, certain choices of probability distributions will be more successful in yielding functional sequences. However, since the number of sequences is exponential in protein length, computational optimization of the distribution is difficult. RESULTS: In this paper, we develop a computational framework for probabilistic protein design following the structural paradigm. We formulate the distribution of sequences for a structure using the Boltzmann distribution over their free energies. The corresponding probabilistic graphical model is constructed, and we apply belief propagation (BP) to calculate marginal amino acid probabilities. We test this method on a large structural dataset and demonstrate the superiority of BP over previous methods. Nevertheless, since the results obtained by BP are far from optimal, we thoroughly assess the paradigm using high-quality experimental data. We demonstrate that, for small scale sub-problems, BP attains identical results to those produced by exact inference on the paradigmatic model. However, quantitative analysis shows that the distributions predicted significantly differ from the experimental data. These findings, along with the excellent performance we observed using BP on the smaller problems, suggest potential shortcomings of the paradigm. We conclude with a discussion of how it may be improved in the future.  相似文献   

12.
13.
14.
Computational protein design (CPD) is a useful tool for protein engineers. It has been successfully applied towards the creation of proteins with increased thermostability, improved binding affinity, novel enzymatic activity, and altered ligand specificity. Traditionally, CPD calculations search and rank sequences using a single fixed protein backbone template in an approach referred to as single-state design (SSD). While SSD has enjoyed considerable success, certain design objectives require the explicit consideration of multiple conformational and/or chemical states. Cases where a "multistate" approach may be advantageous over the SSD approach include designing conformational changes into proteins, using native ensembles to mimic backbone flexibility, and designing ligand or oligomeric association specificities. These design objectives can be efficiently tackled using multistate design (MSD), an emerging methodology in CPD that considers any number of protein conformational or chemical states as inputs instead of a single protein backbone template, as in SSD. In this review article, recent examples of the successful design of a desired property into proteins using MSD are described. These studies employing MSD are divided into two categories-those that utilized multiple conformational states, and those that utilized multiple chemical states. In addition, the scoring of competing states during negative design is discussed as a current challenge for MSD.  相似文献   

15.
A new computational approach for real protein folding prediction   总被引:4,自引:0,他引:4  
An effective and fast minimization approach is proposed for the prediction of protein folding, in which the 'relative entropy' is used as a minimization function and the off-lattice model is used. In this approach, we only use the information of distances between the consecutive Calpha atoms along the peptide chain and a generalized form of the contact potential for 20 types of amino acids. Tests of the algorithm are performed on the real proteins. The root mean square deviations of the structures of eight folded target proteins versus the native structures are in a reasonable range. In principle, this method is an improvement on the energy minimization approach.  相似文献   

16.
We present a novel notion of binding site local similarity based on the analysis of complete protein environments of ligand fragments. Comparison of a query protein binding site (target) against the 3D structure of another protein (analog) in complex with a ligand enables ligand fragments from the analog complex to be transferred to positions in the target site, so that the complete protein environments of the fragment and its image are similar. The revealed environments are similarity regions and the fragments transferred to the target site are considered as binding patterns. The set of such binding patterns derived from a database of analog complexes forms a cloud-like structure (fragment cloud), which is a powerful tool for computational drug design. It has been shown on independent test sets that the combined use of a traditional energy-based score together with the cloud-based score responsible for the quality of embedding of a ligand into the fragment cloud improves the self-docking and screening results dramatically. The usage of a fragment cloud as a source of positioned molecular fragments fitting the binding protein environment has been validated by reproduction of experimental ligand optimization results.  相似文献   

17.
Aronov AM  Bemis GW 《Proteins》2004,57(1):36-50
We present a novel method for stepwise scaffold assembly that integrates fragment-by-fragment ligand design approaches with high-throughput virtual library screening (COREGEN). As an extension of our earlier studies of common features present in drug molecules, we investigate the hypothesis that most pharmaceutically interesting ligands can be expressed in terms of the ring-linker frameworks that comprise them. Analysis of 119 published kinase inhibitors from at least 18 different targets illustrates that a basis set of 4 rings and 8 linkers is sufficient to describe approximately 90% of ring and linker occurrences, respectively. A similar result was derived from a larger set of approximately 40,000 kinase inhibitors from curated patents. A method for ring-linker-based assembly of scaffold libraries that uses experimental information to guide the placement of anchor fragments is validated using a set of reported kinase inhibitors of Bcr-Abl, Cdk2, and Src. In every case, the predominant structural motif of reported ligand cores is reproduced and variations are suggested. To underscore generality of this approach, a novel scaffold for a cyclooxygenase-2 (COX-2) selective ligand is proposed.  相似文献   

18.
G protein-coupled receptors (GPCRs) comprise the most important superfamily of protein targets in current ligand discovery and drug development. GPCRs are integral membrane proteins that play key roles in various cellular signaling processes. Therefore, GPCR signaling pathways are closely associated with numerous diseases, including cancer and several neurological, immunological, and hematological disorders. Computer-aided drug design (CADD) can expedite the process of GPCR drug discovery and potentially reduce the actual cost of research and development. Increasing knowledge of biological structures, as well as improvements on computer power and algorithms, have led to unprecedented use of CADD for the discovery of novel GPCR modulators. Similarly, machine learning approaches are now widely applied in various fields of drug target research. This review briefly summarizes the application of rising CADD methodologies, as well as novel machine learning techniques, in GPCR structural studies and bioligand discovery in the past few years. Recent novel computational strategies and feasible workflows are updated, and representative cases addressing challenging issues on olfactory receptors, biased agonism, and drug-induced cardiotoxic effects are highlighted to provide insights into future GPCR drug discovery.  相似文献   

19.
A computational approach to simplifying the protein folding alphabet.   总被引:13,自引:0,他引:13  
What is the minimal number of residue types required to form a structured protein? This question is important for understanding protein modeling and design. Recently, an experimental finding by Baker and coworkers suggested a five-residue solution to this problem. We were motivated by their results and by the arguments of Wolynes to study reductions of protein representation based on the concept of mismatch between a reduced interaction matrix and the Miyazawa and Jernigan (MJ) matrix. We find several possible simplified schemes from the relationship of minimized mismatch versus the number of residue types (N = approximately 2-20). As a specific case, an optimal reduction with five types of residues has the same form as the simplified palette of Baker and coworkers. Statistical and kinetic features of a number of sequences are tested. Comparison of results from sequences with 20 residue types and their reduced representations indicates that the reduction by mismatch minimization is successful. For example, sequences with five types of residues have good folding ability and kinetic accessibility in model studies.  相似文献   

20.
Protein tyrosine kinases (PTKs) play a central role in the modulation of a wide variety of cellular events such as differentiation, proliferation and metabolism, and their unregulated activation can lead to various diseases including cancer and diabetes. PTKs represent a diverse family of proteins including both receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). Due to the diversity and important cellular roles of PTKs, accurate classification methods are required to better understand and differentiate different PTKs. In addition, PTKs have become important targets for drugs, providing a further need to develop novel methods to accurately classify this set of important biological molecules. Here, we introduce a novel statistical model for the classification of PTKs that is based on their structural features. The approach allows for both the recognition of PTKs and the classification of RTKs into their subfamilies. This novel approach had an overall accuracy of 98.5% for the identification of PTKs, and 99.3% for the classification of RTKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号