首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malonyl-CoA synthetase fromPseudomonas fluorescens was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of 775 M–1 min–1 atpH 7.0, 25°C, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. The inactivated enzyme at low concentration of DEP (<0.2 mM) could be completely reactivated by hydroxylamine but not completely reactivated at high concentration (>0.5 mM), indicating that there may be another functional group modified by DEP. Complete inactivation of malonyl-CoA synthetase required the modification of seven residues per molecule of enzyme; however, only one is calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity.pH dependence of inactivation indicated the involvement of a residue with apK a of 6.7, which is closely related to that of histidyl residue of proteins. Whena subunit treated with DEP was mixed with subunits complex, the enzyme activity completely disappeared, whereas when subunit complex treated with the reagent was mixed witha subunit, the activity remained. Inactivation of the enzyme by the reagent was protected by the presence of malonate and ATP. These results indicate that a catalytically essential histidyl residue is located at or near the malonate and ATP binding region ona subunit of the enzyme.  相似文献   

2.
The crude extracellular cellulase from Clostridium thermocellum was oxidatively inactivated by air and inhibited by sulfhydryl reagents. Activity-loss was prevented and reversed by the addition of a high concentration (10 mM) dithiothreitol (DDT) at zero time and up to 24 h respectively. In the presence of a low concentration (0.4 mM) of DTT, the enzyme was more rapidly inactivated than in air alone. This was probably due to autoxidation of the low DTT concentration to H2O2 as shown by its prevention by a high DTT concentration, exclusion of air, or catalase; and by the oxidative inactivation of the enzyme by H2O2. The inactivation by H2O2 could be prevented by a high concentration of DTT but not by air exclusion. EDTA protected the enzyme from inactivation in air by a low concentration of DTT or by H2O2. This is presumably due to the role of metals in oxidation of SH groups. Furthermore, copper (5 M) also caused inactivation and this was prevented by the presence of a high DTT concentration. Even in the protective atmosphere of a high DTT concentration, cellulase was inactivated by certain apolar chelating agents such as o-phenanthroline and -1-dipyridyl, such inactivation being preventable by the prior incubation of the chelator with a mixture of Fe2+ and Fe3+. These data suggest that the clostridial cellulase, unlike the enzyme from aerobic fungi, contains essential sulfhydryl groups and is stimulated by iron. The endo--glucanase component of the cellulase complex was not susceptible to oxidative inactivation.Abbreviations DTT dithiothreitol - CMC carboxymethylcellulose - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - NEM N-ethylmaleimide - p-CMB p-chloromercuribenzoic acid  相似文献   

3.
    
6--(Trifluoromethane sulfonyl)-amido-penicillanic acid sulfone was found to be a potent inhibitor ofBacillus licheniformis 749/C -lactamase. Rates of inactivation of the enzyme by this inhibitor increased with decreasingpH of the reaction medium. The irreversible inactivation of the enzyme was accompanied by a stoichiometric incorporation of I mole of the inhibitor per mole of protein, resulting in the appearance of a chromophore (max, 310 nm). Analysis of the chromophoric peptide isolated from the tryptic digest of the inactivated protein revealed the presence of the label in the segment corresponding to residues 66–73 in the primary structure of the enzyme.  相似文献   

4.
Malonyl-CoA synthetase fromPseudomonas fluorescens was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of 775 M?1 min?1 atpH 7.0, 25°C, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. The inactivated enzyme at low concentration of DEP (<0.2 mM) could be completely reactivated by hydroxylamine but not completely reactivated at high concentration (>0.5 mM), indicating that there may be another functional group modified by DEP. Complete inactivation of malonyl-CoA synthetase required the modification of seven residues per molecule of enzyme; however, only one is calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity.pH dependence of inactivation indicated the involvement of a residue with apK a of 6.7, which is closely related to that of histidyl residue of proteins. Whena subunit treated with DEP was mixed with β subunits complex, the enzyme activity completely disappeared, whereas when β subunit complex treated with the reagent was mixed witha subunit, the activity remained. Inactivation of the enzyme by the reagent was protected by the presence of malonate and ATP. These results indicate that a catalytically essential histidyl residue is located at or near the malonate and ATP binding region ona subunit of the enzyme.  相似文献   

5.
We have studied the amino-acid residues involved in the catalytic activity of two distinct brain sialyltransferases acting on fetuin and asialofetuin. These two enzymes were strongly inhibited byN-bromosuccinimide, a specific blocking reagent for tryptophan residues. This result suggests the involvement of such residues in the catalytic process of the two sialytransferases. Furthermore, chemical modifications by various sulfhydryl reagents led to a strong inhibition of the fetuin sialyltransferase while the asialofetuin sialyltransferase was only slightly inhibited. For a more thorough understanding of the thiol inactivation mechanism of the fetuin sialyltransferase, we studied in more detail the reactivity of this enzyme with NEM (N-ethylmaleimide), an irreversible reagent. The time-dependent inactivation followed first-order kinetics and these kinetic data afforded presumptive evidence for the binding of 1 mol NEM per mol of enzyme. Only CMP-NeuAc protected the enzyme against NEM inactivation effectively. MnCl2 did not enhance the protective effect of CMP-NeuAc. The modifications of the fetuin sialyltransferase kinetic parameters by NEM showed a competitive mechanism between NEM and CMP-NeuAc. The results suggest the involvement of a sulfhydryl residue in or near the nucleotide-sugar binding may induce a change in conformation of the protein, leading to a decreased accessibility of this thiol group located near the nucleotide-sugar binding site). This SH group, is essential to the enzyme activity, which is not the case for the asialofetuin sialyltransferase.Abbreviations p-CMB p-chloromercuribenzoic acid - CPDS 6,6-dithiodinicotinic acid carboxypyridine disulfide - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - NEM N-ethylmaleimide - DTT dithiothreitol - Mes 2-(N-morpholino)ethane sulfonic acid - NeuAc N-acetylneuraminic acid  相似文献   

6.
The 4-aminophenyloxanilic acid and -mercaptopyruvic acid linked to the reactive diclorotriazine ring, were studied as active site-direct affinity labels towards oxaloacetate decarboxylase (EC 4.1.1.3, OXAD). Oxaloacetate decarboxylase when incubated with 4-aminophenyloxanilic-diclorotriazine (APOD) or -mercaptopyruvic-diclorotriazine (MPD) at pH 7.0 and 25°C shows a time-dependent and concentration-dependent loss of enzyme activity. The inhibition was irreversible and activity cannot be recovered either by extensive dialysis or gel-filtration chromatography. The enzyme inactivation following the Kitz & Wilson kinetics for time-dependent irreversible inhibition. The observed rate of enzyme inactivation (k obs) exhibits a non-linear dependence on APOD or MPD concentration with maximum rate of inactivation (k 3) of 0.013 min–1 and 0.0046 min–1 and K D equal to 20.3 and 156 M respectively. The inactivation of oxaloacetate decarboxylase by APOD and MPD is competitively inhibited by OXAD substrate and inhibitors, such as oxaloacetate, ADP and oxalic acid whereas Mn+2 enhances the rate of inactivation. The rate of inactivation of OXAD by APOD shows a pH dependence with an inflection point at 6.8, indicating a possible histidine derivatization by the label. These results show that APOD and MPD demonstrate the characteristics of an active-site probe towards the oxaloacetate binding site of oxaloacetate decarboxylase.  相似文献   

7.
The activity of pure calf-liver and Escherichia coli thioredoxin reductases decreased drastically in the presence of NADPH or NADH, while NADP+, NAD+ and oxidized E. coli thioredoxin activated both enzymes significantly, particularly the bacterial one. The loss of activity under reducing conditions was time-dependent, thus suggesting an inactivation process: in the presence of 0.24 mM NADPH the half-lives for the E. coli and calf-liver enzymes were 13.5 and 2 min, respectively. Oxidized E. coli thioredoxin fully protected both enzymes from inactivation, and also promoted their complete reactivation after only 30 min incubation at 30° C. Lower but significant protection and reactivation was also observed with NADP+ and NAD+. EDTA protected thioredoxin reductase from NADPH inactivation to a great degree, thus indicating the participation of metals in the process; EGTA did not protect the enzyme from redox inactivation. Thioredoxin reductase was extensively inactivated by NADPH under aerobic and anaerobic conditions, thus excluding the participation of O2 or oxygen active species in redox inactivation. The loss of thioredoxin reductase activity promoted by NADPH was much faster and complete in the presence of NAD+ glycohydrolase, thus suggesting that inactivation was related to full reduction of the redox-active disulfide. Those results indicate that thioredoxin reductase activity can be modulated in bacteria and mammals by the redox status of NADP(H) and thioredoxin pools, in a similar way to glutathione reductase. This would considerably expand the regulatory potential of the thioredoxin-thioredoxin reductase system with the enzyme being self-regulated by its own substrate, a regulatory protein.Abbreviations DTNB 5,5-dithiobis(2-nitrobenzoate) - EGTA Ethylenglycoltetraacetic Acid - TNB 5-thio-2-nitrobenzoate - Trx Thioredoxin - Trx(SH)2 Reduced Thioredoxin - Trx-S2 Oxidized Thioredoxin  相似文献   

8.
Summary The glutathione reductase from E. coli was rapidly inactivated following aerobic incubation of the pure and cell-free extract enzymes with NADPH, NADH and other reductants. The inactivation of the pure enzyme depended on the time and temperature of incubation (t1/2 = 2 min at 37°C), and was proportional to the |INADPH|/|enzyme| ratio, reaching 50% in the presence of 0.3 M NADPH and 45 M NADH respectively, at a subunit concentration of 20 nM. Higher pyridine nucleotide concentrations were required to inactivate the enzyme from cell-free extracts. Two apparent pKa, corresponding to pH 5.8 and 7.3, were determined for the redox inactivation. The enzyme remained inactive even after eliminating the excess NADPH by gel chromatography. E. coli glutathione reductase was protected by oxidized and reduced glutathione against redox inactivation with both pure and cell-free extract enzymes. Ferricyanide and dithiothreitol protected only the pure enzyme, while NADP+ exclusively protected the cell-free extract enzyme. The inactive glutathione reductase was reactivated by treatment with oxidized and reduced glutathione, ferricyanide, and dithiothreitol in a time-and temperature-dependent process. The oxidized form of glutathione was more efficient and specific than the reduced form in the protection and reactivation of the pure enzyme.The molecular weight of the redox-inactivated E. coli glutathione reductase was similar to that of the dimeric native enzyme, ruling out aggregation as a possible cause of inactivation. A tentative model is discussed for the redox inactivation, involving the formation of an erroneous disulfide bridge at the glutathione-binding site.  相似文献   

9.
Summary The redox interconversion of Escherichia coli glutathione reductase has been studied both in situ, with permeabilized cells treated with different reductants, and in vivo, with intact cells incubated with compounds known to alter their intracellular redox state.The enzyme from toulene-permeabilized cells was inactivated in situ by NADPH, NADH, dithionite, dithiothreitol, or GSH. The enzyme remained, however, fully active upon incubation with the oxidized forms of such compounds. The inactivation was time-, temperature-, and concentration-dependent; a 50% inactivation was promoted by just 2 M NADPH, while 700 M NADH was required for a similar effect. The enzyme from permeabilized cells was completely protected against redox inactivation by GSSG, and to a lesser extent by dithiothreitol, GSH, and NAD(P)+. The inactive enzyme was efficiently reactivated in situ by physiological GSSG concentrations. A significant reactivation was promoted also by GSH, although at concentrations two orders of magnitude below its physiological concentrations. The glutathione reductase from intact E. coli cells was inactivated in vivo by incubation with DL-malate, DL-isocitrate, or higher L-lactate concentrations. The enzyme was protected against redox inactivation and fully reactivated by diamide in a concentration-dependent fashion. Diamide reactivation was not dependent on the synthesis of new protein, thus suggesting that the effect was really a true reactivation and not due to de novo synthesis of active enzyme. The glutathione reductase activity increased significantly after incubation of intact cells with tert-butyl or cumene hydroperoxides, suggesting that the enzyme was partially inactive within such cells. In conclusion, the above results show that both in situ and in vivo the glutathione reductase of Escherichia coli is subjected to a redox interconversion mechanism probably controlled by the intracellular NADPH and GSSG concentrations.  相似文献   

10.
Treatment of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with the arginine-specific reagent, phenylglyoxal, irreversibly inactivated both 6-phosphofructo-2-kinase and fructose-6-bisphosphatase in a time-dependent and dose-dependent manner. Fructose 6-phosphate protected against 2,6-phosphofructo-2-kinase inactivation, whereas MgGTP protected against fructose-2,6-bisphosphatase inactivation. Semi-logarithmic plots of the time course of inactivation by different phenylglyoxal concentrations were non-linear, suggesting that more than one arginine residue was modified. The stoichiometry of phenylglyoxal incorporation indicated that at least 2 mol/mol enzyme subunit were incorporated. Enzyme which had been phosphorylated by cyclic-AMP-dependent protein kinase was inactivated to a lesser degree by phenylglyoxal, suggesting that the serine residue (Ser32) phosphorylated by cyclic-AMP-dependent protein kinase interacts with a modified arginine residue. Chymotryptic cleavage of the modified protein and microsequencing showed that Arg225, in the 6-phosphofructo-2-kinase domain, was one of the residues modified by phenylglyoxal. The protection by fructose 6-phosphate against the labelling of chymotryptic fragments containing Arg225, suggests that this residue is involved in fructose 6-phosphate binding in the 6-phosphofructo-2-kinase domain of the bifunctional enzyme.  相似文献   

11.
The purified glutamate dehydrogenase (GDH) from Sulfolobus solfataricus showed remarkable thermostability and retained 90–95% of the initial activity after incubation at –20°C, 4°C, and 25°C for up to 6 months. Unlike mammalian GDHs, the activity of GDH from Sulfolobus solfataricus was not significantly affected by the presence of various allosteric effectors such as ADP, GTP, and leucine. Incubation of GDH with increasing concentration of o-phthalaldehyde resulted in a progressive decrease in enzyme activity, suggesting that the o-phthalaldehyde-modified lysine or cysteine is directly involved in catalysis. The inhibition was competitive with respect to both 2-oxoglutarate (Ki = 30 M) and NADH (Ki = 100 M), further supporting a possibility that the o-phthalaldehyde-modified residues may be directly involved at the catalytic site. The modification of GDH by the arginine-specific dicarbonyl reagent phenylglyoxal was also examined with the view that arginine residues might play a general role in the binding of coenzyme throughout the family of pyridine nucleotide-dependent dehydro-genases. The purified GDH was inactivated in a dose-dependent manner by phenylglyoxal. Either NADH or 2-oxoglutarate did not gave any protection against the inactivation caused by a phenylglyoxal. This result indicates that GDH saturated with NADH or 2-oxoglutarate is still open to attack by phenylglyoxal. Phenylglyoxal was an uncompetitive inhibitor (Ki = 5 M) with respect to 2-oxoglutarate and a noncompetitive inhibitor (Ki = 6 M) with respect to NADH. The above results suggests that the phenylglyoxal-modified arginine residues are not located at the catalytic site and the inactivation of GDH by phenylglyoxal might be due to a steric hindrance or a conformational change affected by the interaction of the enzyme with its inhibitor.  相似文献   

12.
Satoh S  Yang SF 《Plant physiology》1989,91(3):1036-1039
The pyridoxal phosphate-dependent 1-aminocyclopropane-1-carboxylate (ACC) synthase catalyzes the conversion of S-adenosyl-l-methionine (AdoMet) to ACC, and is inactivated by AdoMet during the reaction. l-Vinylglycine was found to be a competitive inhibitor of the enzyme, and to cause a time-dependent inactivation of the enzyme. The inactivation required the presence of pyridoxal phosphate and followed pseudo-first-order kinetics at various concentrations of l-vinylglycine. The Michaelis constant for l-vinylglycine in the inactivation reaction (Kinact) was 3.3 millimolar and the maximum rate constant (kmax) was 0.1 per minute. These findings, coupled with the previous observations that the suicidal action of AdoMet involved a covalent linkage of the aminobutyrate portion of AdoMet to the enzyme, support the view that the mechanism-based inactivation of ACC synthase by the substrate AdoMet proceeds through the formation of a vinylglycine-ACC synthase complex as an intermediate.  相似文献   

13.
Chemical modification of purified d-glucosaminate dehydratase (GADH) apoenzyme by N-ethyl-maleimide (NEM) and by 7-chloro-4-aminobenzo-2-oxa-1,3-diazole (NBDC1) resulted in the time- and concentration-dependent inactivation of the enzyme in each case. The inactivation followed pseudo-first-order kinetics and a double-logarithmic plot of the observed pseudo-first-order rate constant against reagent concentration proved evidence for an approximately first-order reaction, suggesting that the modification of a single cysteine residue per mole of enzyme resulted in inactivation. Amino acid analysis of the NEM-inactivated enzyme showed that three moles of cysteine residues among six moles per mole of subunit were modified under these conditions, therefore one of the three cysteine residues modified by NEM may be essential for activity. Pyridoxal 5′-phosphate (PLP) and D-glucosaminate (GlcNA) protected the enzyme against inactivation by NEM and NBDCI. The apoenzyme was inactivated by EDTA and activity of enzyme was restored by incubation with Mn2+ in the presence of PLP. Incubation of the EDTA-treated enzyme with NEM inhibited the restoration of activity. These results suggest that one of the cysteine residues of GADH may be chelated to a Mn2+ at or near the active site of GADH, contributing to formation of the active enzyme.  相似文献   

14.
Alignment of 23 branching enzyme (BE) amino acid sequences from various species showed conservation of two arginine residues. Phenylglyoxal (PGO) was used to investigate the involvement of arginine residues of maize BEI and BEII in catalysis. BE was significantly inactivated by PGO in triethanolamine buffer at pH 8.5. The inactivation followed a time- and concentration-dependent manner and showed pseudo first-order kinetics. Slopes of 0.73 (BEI) and 1.05 (BEII) were obtained from double log plots of the observed rates of inactivation against the concentrations of PGO, suggesting that loss of BE activity results from as few as one arginine residue modified by PGO. BE inactivation was positively correlated with [14C]PGO incorporation into BE protein and was considerably protected by amylose and/or amylopectin, suggesting that the modified arginine residue may be involved in substrate binding or located near the substrate-binding sites of maize branching enzymes I and II.Abbreviations BE branching enzyme - BCA bicinchoninic acid - BSA bovine serum albumin - Glc-1-P glucose-1-phosphate - IPTG isopropyl-d-thiogalactoside - PGO phenylglyoxal - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium docecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid - TEA triethanolamine  相似文献   

15.
Summary Redox inactivation of glutathione reductase involves metal cations, since chelators protected against NADPH-inactivation, 3 µM EDTA or 10 µM DETAPAC yielding full protection. Ag+, Zn2+ and Cd2+ potentiated the redox inactivation promoted by NADPH alone, while Cr3+, Fe2+, Fe3+, Cu+, and Cu2+ protected the enzyme. The Zn2+ and Cd2+ effect was time-dependent, unlike conventional inhibition. Glutathione reductase interconversion did not require dioxygen, excluding participation of active oxygen species produced by NADPH and metal cations. One Zn2+ ion was required per enzyme subunit to yield full NADPH-inactivation, the enzyme being reactivated by EDTA. Redox inactivation of glutathione reductase could arise from the blocking of the dithiol formed at the active site of the reduced enzyme by metal cations, like Zn2+ or Cd2+.The glutathione reductase activity of yeast cell-free extracts was rapidly inactivated by low NADPH or moderate NADH concentrations; NADP+ also promoted rapid inactivation in fresh extracts, probably after reduction to NADPH. Full inactivation was obtained in cell-free extracts incubated with glucose-6-phosphate or 6-phosphogluconate; the inactivating efficiency of several oxidizable substrates was directly proportional to the specific activities of the corresponding dehydrogenases, confirming that redox inactivation derives from NADPH formed in vitro.Abbreviations DETAPAC diethylenetriaminepentaacetic acid - 2,5-ADP-Sepharose-N6-(6-aminohexyl) adenosine 2,5-bisphosphateSepharose  相似文献   

16.
Under mild conditions, 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate rapidly and irreversibly inactivates ribulosebisphosphate carboxylase from Rhodospirillum rubrum. The substrate ribulosebisphosphate protects the enzyme against inactivation. Incorporation of reagent has been quantitated by reduction of the modified carboxylase with [3H]NaBH4. Based on the difference in the levels of incorporation found in the inactivated enzyme as compared with the protected enzyme, loss of enzymic activity results from the modification of about 0.4 residue per catalytic subunit. Analyses of hydrolysates demonstrate that both cysteinyl and lysyl derivatives are present in the inactivated carboxylase; the protected sample contains about the same amount of modified cysteine but little of the modified lysine. Thus, inactivation appears to correlate with derivatization of lysyl residues.  相似文献   

17.
Studies have been done on the inhibition and inactivation of the β-glucosidase and β-fucosidase enzyme from Thai Rosewood (Dalbergia cochinchinesis Pierre). The enzyme was inhibited by Tris with similar Ki of 11.7 mm and 14.3 mm for the hydrolysis of p/nitrophenyl β-d-glucoside (PNPG) and p/nitrophenyl β-d-fucoside (PNPF), respectively. Conduritol B epoxide inhibited both β-glucosidase and β/fucosidase activities to similar extents, with a pseudo-first-order rate constant (Kobs) of inactivation of 5.56 × 10?3 s ?1, and binding stoichiometry of 0.9 mol per subunit. Partially inactivated enzyme showed similar kinetics with PNPG and PNPF as substrates. Moreover, Tris at 300 mm protected both β-glucosidase and β-fucosidase activities from inactivation by 6mm CBE. The data support the idea that the Dalbergia cochinchinensis Pierre enzyme has a common active site for the hydrolysis of PNPG and PNPF.  相似文献   

18.
The endo--1,4-xylanase (EC 3.2.1.8) from Trichosporon cutaneum was chemically modified using amino acid-specific reagents. The enzyme does not bear arginines essential for activity, since 1,2-cyclohexanedione and 2,3-butanedione, although they modify the enzyme (after chromatographic analysis), have no effect on its activity. Reaction of the enzyme with tetranitromethane and N-acetylimidazole did not result in a significant activity loss as a result of modification of tyrosine residues. The water-soluble carbodiimide 1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide inactivated the xylanase rapidly and completely in a pseudo-first-order process, and kinetic analysis indicated that at least one molecule of carbodiimide binds to the enzyme for inactivation. A mixture of neutral xylooligomers provided significant protection of the enzyme against this carbodiimide inactivation. Reaction of the xylanase with 2,4,6-trinitrobenzene sulfonic acid did not result in a significant activity loss as a result of modification of lysine residues. Titration of the enzyme with 5,5-dithiobis-(2-nitrobenzoic acid) and treatment with iodoacetamide and p-chloromercuribenzoate indicated the presence of a free/active thiol group. Xylan completely protected the enzyme from inactivation by p-hydroxymercuribenzoate, suggesting the presence of cysteine at the substrate-binding site. Inactivation of xylanase by p-hydroxymercuribenzoate could be restored by cysteine.  相似文献   

19.
The gene for C4-pyruvate,orthophosphate dikinase (PPDK) from maize (Zea mays) was cloned into an Escherichia coli expression vector and recombinant PPDK produced in E. coli cells. Recombinant enzyme was found to be expressed in high amounts (5.3 U purified enzyme-activity liter-1 of induced cells) as a predominantly soluble and active protein. Biochemical analysis of partially purified recombinant PPDK showed this enzyme to be equivalent to enzyme extracted from illuminated maize leaves with respect to (i) molecular mass, (ii) specific activity, (iii) substrate requirements, and (iv) phosphorylation/inactivation by its bifunctional regulatory protein.Abbreviations DTT- dithiothreitol - FPLC- fast-protein liquid chromatography - HAP- hydroxyapatite - IPTG- isopropyl--thiogalactoside - MOPS- 3-(N-morpholino)propanesulfonic acid - PCR- polymerase chain reaction - PEP- phosphoenolpyruvate - PMSF- phenylmethylsufonyl fluoride - PPDK- pyruvate,orthophosphate dikinase - RP- regulatory protein  相似文献   

20.
The acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli was reversibly inactivated by pyridoxal 5′-phosphate. The residual activity of the enzyme was dependent on the concentration of the modifying reagent to a concentration of 5 mm. The maximum level of inactivation was 89%. Kinetic and equilibrium analyses of inactivation were consistent with a two-step process (Chen and Engel, 1975, Biochem. J.149, 619) in which the extent of inactivation was limited by the ratio of first-order rate constants for the reversible formation of an inactive Schiff base of pyridoxal 5′-phosphate and the enzyme from a noncovalent, dissociable complex of the enzyme and modifier. The calculated minimum residual activity was in close agreement with the experimentally determined value. The conclusion that the loss of catalytic activity resulted from modification of a lysine residue at the active site was based on the following data, (a) After incubation with 5 mm pyridoxal 5′-phosphate, 3.95 mol of the reagent was incorporated per mole of free enzyme with 89% loss of activity, while 2.75 mol of pyridoxal 5′-phosphate was incorporated into the enzyme-CoA intermediate with a loss of 10% of catalytic activity; the intermediate was formed in the presence of acetoacetyl-CoA; (b) acid hydrolysis of the modified, reduced enzyme-CoA intermediate yielded a single fluorescent compound that was identified as N6-pyridoxyllysine by chromatography in two solvent systems; (c) the enzyme was also protected from inactivation by saturating concentrations of free CoA and ADP but not by adenosine. The results suggested that a lysine residue is involved in the electrostatic binding of the pyrophosphate group of CoA. Carboxylic acid substrate did not protect the enzyme from inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号