首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Insulin-like growth factor I (IGF-I), a growth hormone (GH)-dependent growth factor exerts feedback regulation of GH by inhibiting GH gene expression. IGF-I inhibition of GH secretion is enhanced 3-5-fold in GC rat pituitary cells overexpressing the wild type 950Tyr human IGF-I receptor which autophosphorylates appropriately. To determine the critical amino acid sequence responsible for IGF-I signaling, insertion, deletion, and site-directed mutants were constructed to substitute for 950Tyr in exon 16 of the human IGF-I receptor beta-subunit transmembrane domain. All mutant transfectants bound IGF-I with a similar Kd to untransfected cells but had markedly increased (7-34-fold) IGF-I-binding sites. GH responsiveness to IGF-I was tested in mutant transfectants. Overexpressed site-directed and insertion mutant IGF-I receptors exhibited a modest suppressive effect on GH in response to the IGF-I ligand, similar to that observed in untransfected cells. Deletion mutant (IG-FIR delta 22) (amino acid 944-965) did not transduce the IGF-I signal to the GH gene. Site-directed and insertion mutants therefore did not enhance the IGF-I response of the endogenous rat receptor, unlike the 950Tyr wild type transfectants which enhanced the IGF-I signal. All mutant transfectants, except the deletion mutant, internalized radioactive ligand similarly to 950Tyr wild type transfectants. 950Tyr of the human IGF-I receptor is therefore required for IGF-I signal transduction in the pituitary somatotroph, but not for IGF-I-mediated internalization.  相似文献   

2.
3.
4.
The purpose of this investigation was to study signaling by an insulin-like growth factor I receptor (IGF-I R) that lacks the extracellular portion of the receptor. We transfected IGF-I R-negative mouse embryo fibroblasts with a truncated IGF-I R consisting of only the transmembrane and cytoplasmic part of the beta subunit. Proliferation as assessed by counting cells was the same for vector only transfectants and the truncated receptor transfectants in defined medium containing EGF and PDGF. In contrast, anchorage-independent growth as measured by colony formation in soft agar was markedly increased for the truncated IGF-I R transfectants compared to the vector transfectants. MAP-kinase activity in the truncated IGF-I R transfectants was not higher than in the vector transfectants; however, PI 3-kinase activity was significantly higher in the IGF-I R transfectants. These results provide evidence that an IGF-I receptor consisting of only the transmembrane and cytoplasmic domain of the beta subunit can signal pathways leading to anchorage-independent growth.  相似文献   

5.
The binding of 125I-insulin-like growth factor-I (125I-IGF-I) to bovine chromaffin cells was measured. Chromaffin cell cultures contained 111,000 +/- 40,000 IGF-I binding sites/cell. These sites bound IGF-I with a KD of 1.1 +/- 0.3 nM and had a much lower affinity for insulin. Cross-linking studies showed that 125I-IGF-I bound to a protein that had an Mr of approximately 125,000, similar to the Mr of the alpha subunit of the IGF-I receptor in other tissues. Cells cultured with IGF-I (10 nM) for 4 days exhibited an almost twofold increase in high K+-evoked catecholamine secretion. Insulin was much less potent than IGF-I in enhancing catecholamine secretion. These data indicate that binding of IGF-I to its receptors on chromaffin cells can modulate the function of these cells.  相似文献   

6.
7.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

8.
Stable transfectants of Chinese hamster ovary (CHO) cells were developed that expressed the protein encoded by a human insulin-like growth factor I (IGF-I) receptor cDNA. The transfected cells expressed approximately 25,000 high affinity receptors for IGF-I (apparent Kd of 1.5 X 10(-9) M), whereas the parental CHO cells expressed only 5,000 receptors per cell (apparent Kd of 1.3 X 10(-9) M). A monoclonal antibody specific for the human IGF-I receptor inhibited IGF-I binding to the expressed receptor and immunoprecipitated polypeptides of apparent Mr values approximately 135,000 and 95,000 from metabolically labeled lysates of the transfected cells but not control cells. The expressed receptor was also capable of binding IGF-II with high affinity (Kd approximately 3 nM) and weakly recognized insulin (with about 1% the potency of IGF-I). The human IGF-I receptor expressed in these cells was capable of IGF-I-stimulated autophosphorylation and phosphorylation of endogenous substrates in the intact cell. This receptor also mediated IGF-I-stimulated glucose uptake, glycogen synthesis, and DNA synthesis. The extent of these responses was comparable to the stimulation by insulin of the same biological responses in CHO cells expressing the human insulin receptor. These results indicate that the isolated cDNA encodes a functional IGF-I receptor and that there are no inherent differences in the abilities of the insulin and IGF-I receptors to mediate rapid and long term biological responses when expressed in the same cell type. The high affinity of this receptor for IGF-II also suggests that it may be important in mediating biological responses to IGF-II as well as IGF-I.  相似文献   

9.
Muscle is an important target tissue for insulin-like growth factor (IGF) action. We have previously reported that muscle cell differentiation is associated with down-regulation of the IGF-I receptor at the level of gene expression that is concomitant with an increase in the expression and secretion of IGF-II. Furthermore, treatment of myoblasts with IGF-II resulted in a similar decrease in IGF-I receptor mRNA abundance, suggesting an autocrine role of IGF-II in IGF-I receptor regulation. To explore further the role of IGF-II in IGF-I receptor regulation, BC3H-1 mouse muscle cells were exposed to differentiation medium in the presence of basic fibroblast growth factor (FGF), a known inhibitor of myogenic differentiation. FGF treatment of cells resulted in a 50% inhibition of IGF-II gene expression compared to that in control myoblasts and markedly inhibited IGF-II secretion. Concomitantly, FGF resulted in a 60-70% increase in IGF-I binding compared to that in control myoblasts. Scatchard analyses and studies of gene expression demonstrated that the increased IGF-I binding induced by FGF reflected parallel increases in IGF-I receptor content and mRNA abundance. These studies indicate that FGF may up-regulate IGF-I receptor expression in muscle cells through inhibition of IGF-II peptide expression and further support the concept of an autocrine role of IGF-II in IGF-I receptor regulation. In addition, these studies suggest that one mechanism by which FGF inhibits muscle cell differentiation is through inhibition of IGF-II expression.  相似文献   

10.
IGF-I-dependent decreases in endogenous GH mRNA expression were studied in individual rat MtT/S somatotroph cells using in situ hybridization. It was first shown that increasing IGF-I concentrations (0-90 nM) decreased GH mRNA levels in a ultrasensitive manner when averaged over the entire population, such that the decrease occurred over a narrow range of IGF-I concentration with an EC50 of 7.1 nM. The degree of ultrasensitivity of the population average was expressed by calculating the Hill coefficient (nA), which had a value of -2.0. GH mRNA levels in individual dispersed cells from these cultures were then measured. These results were first summed for all cells to show that the average response of the population remained ultrasensitive (nA = -2.6, EC50 = 8.1 nM). Then, parameters for individual cells of the population were calculated using mathematical modeling of the distribution of individual cell GH mRNA levels after treatment with 0-90 nM IGF-I. Solution of the data from the individual cells yielded a Hill coefficient (nI = -0.65) and a heterogeneity coefficient (mI = -1.2) indicative of individual cell responsiveness to IGF-I that was not ultrasensitive and very heterogeneous. These results suggested that ultrasensitivity in the population may likely be caused by an extracellular mechanism regulating IGF-I concentrations, such as IGF binding proteins. Increasing concentrations of long (Arg)3IGF-1, an analog that binds the IGF type-1 receptor but not IGF binding proteins, showed a linear inhibition of GH mRNA levels. Treatment with IGF binding protein ligand inhibitor, an IGF-I analog that binds to IGF binding proteins but not the IGF type-1 receptor, decreased GH mRNA levels in the absence of exogenous IGF-I. Thus, IGF binding proteins provide the extracellular sequestration of IGF-I necessary for the precise and ultrasensitive regulation of GH mRNA levels in the entire cell population, although expression within individual cells is regulated in a graded fashion.  相似文献   

11.
12.
MCF-7 cells were grown in serum free medium (Dulbecco MEM without phenol red, supplemented with Costar SF-1 without insulin). Insulin was added as required and gave dose dependent growth stimulation at concentrations between 5 and 10,000 nM. Identical growth response curves were obtained for thymidine uptake and cell number. Oestradiol and insulin-like growth factor I (IGF-I) added individually both gave a dose dependent stimulation of cell growth in serum free medium containing 50 nM insulin. The growth stimulatory effect of oestradiol was to a large extent inhibited with suramine, a general inhibitor of growth factors, indicating that the effect of oestradiol was mediated through stimulating autocrine secretion of a growth factor.

To investigate a possible link between the effects of oestradiol and IGF-I, a specific IGF-I receptor antibody (IR-3), 10 μg/ml was used. These experiments were carried out with 2.5 nM insulin in the medium, a concentration at which insulin had no growth stimulatory effect. Stimulation was carried out for 18 h before assay of thymidine uptake. The effect of oestradiol was not significantly reduced by IR-3, indicating that IGF-I was not an autocrine mediator of oestradiol stimulation of cell growth under these conditions, whereas IR-3 extensively reduced growth stimulation by IGF-I. On long term stimulation (5 days) oestradiol had a marked stimulatory effect on cell number and IR-3 almost totally abrogated this effect. When oestradiol (1 nM) and IFG-I (2.5 nM) were added together, the combined effect on thymidine incorporation and cell number was significantly greater than additive. This synergistic effect on the IGF-I growth response was totally abolished by the IGF-I receptor antibody. The results suggest a cooperative interaction of oestradiol and IGF-I. It is concluded that growth stimulation of MCF-7 cells by long term treatment with oestradiol may be mediated through autocrine secretion of IGF-I.

The effect of short term stimulation of thymidine incorporation suggest that the growth response of oestradiol is more complex, and indicate that a cooperative interaction with IGF-I is involved, which is unrelated to stimulated autocrine secretion.  相似文献   


13.
14.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

15.
Insulin-like growth factor-I (IGF-I) receptors are present in breast cancer cells and may play a role in breast cancer cell growth. We have studied the effect of progestins on IGF-I receptors in T47D human breast cancer cells. T47D cells constitutively express high levels of progesterone receptors and are a model for studying the regulation of cellular functions by progestins. Treatment of T47D cells with either progesterone or the synthetic progestin promegestone (R5020) decreased IGF-I receptor content by approximately 50%, as measured by Scatchard analysis and receptor biosynthesis studies. In contrast to progestins, estradiol, dexamethasone, and dihydrotestosterone did not influence IGF-I receptor content. No effect of R5020 was seen after 12 h of incubation, a near-maximal effect was seen after 24 h, and greatest effects were seen after 72 h. R5020 decreased IGF-I receptor mRNA abundance, indicating that progestins acted at the level of gene expression. However, progestins also increased the secretion of IGF-II, a ligand for the IGF-I receptor. In contrast to IGF-II, T47D cells did not express IGF-I. The addition of exogenous IGF-II to T47D cells down-regulated both IGF-I receptor binding and IGF-I receptor mRNA abundance. This study indicates, therefore, that progestins regulate IGF-I receptors in breast cancer cells and suggests that this regulation occurs via an autocrine pathway involving enhanced IGF-II secretion.  相似文献   

16.
17.
Insulin-like growth factor-I (IGF-I) receptors and insulin receptors belong to the same subfamily of receptor tyrosine kinases and share a similar set of intracellular signaling pathways, despite their distinct biological actions. In the present study, we evaluated T cell death-associated gene 51 (TDAG51), which we previously identified by cDNA microarray analysis as a gene specifically induced by IGF-I. We characterized the signaling pathways by which IGF-I induces TDAG51 gene expression and the functional role of TDAG51 in IGF-I signaling in NIH-3T3 (NWTb3) cells, which overexpress the human IGF-I receptor. Treatment with IGF-I increased TDAG51 mRNA and protein levels in NWTb3 cells. This effect of IGF-I was specifically mediated by the IGF-IR, because IGF-I did not induce TDAG51 expression in NIH-3T3 cells overexpressing a dominant-negative IGF-I receptor. Through the use of specific inhibitors of various protein kinases, we found that IGF-I induced TDAG51 expression via the p38 MAPK pathway. The ERK, JNK, and phosphatidylinositol 3-kinase pathways were not involved in IGF-I-induced regulation of TDAG51. To assess the role of TDAG51 in IGF-I signaling, we used small interfering RNA (siRNA) expression vectors directed at two different target sites to reduce the level of TDAG51 protein. In cells expressing these siRNA vectors, TDAG51 protein levels were decreased by 75-80%. Furthermore, TDAG51 siRNA expression abolished the ability of IGF-I to rescue cells from serum starvation-induced apoptosis. These findings suggest that TDAG51 plays an important role in the anti-apoptotic effects of IGF-I.  相似文献   

18.
19.
The human insulin-like growth factor-I (IGF-I) gene contains two alternative leader exons: exons 1 and 2. We have identified, by transient transfection experiments, the putative promoters P1 and P2 upstream of these leader exons. The promoter regions were cloned in front of the luciferase reporter gene and their promoter activities were measured in transfected SK-N-MC (human neuroepithelioma) and OVCAR-3 (human ovarian carcinoma) cells. Both of these cell lines express the IGF-I gene endogenously, resulting in normally sized IGF-I mRNAs of 7.6, 1.3 and 1.1 kb. In SK-N-MC cells, in which P1 is the most active IGF-I promoter, P2 displayed a three times lower promoter activity than P1. However, in OVCAR-3 cells, P2 is four times more active than P1, resulting in an overall 12-fold difference in the relative promoter activities of the two IGF-I gene promoters in these two cell types. This indicates that the IGF-I promoters show a cell type-specific expression pattern.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号