首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karp NA  Kreil DP  Lilley KS 《Proteomics》2004,4(5):1421-1432
Two-dimensional difference gel electrophoresis (DIGE) is a tool for measuring changes in protein expression between samples involving pre-electrophoretic labeling with cyanine dyes. Here we assess a common method to analyze DIGE data using the DeCyder software system. Experimental error was studied by a series of same sample comparisons. Aliquots of sample were labeled with N-hydroxyl succinimidyl ester-derivatives of Cy2, Cy3, and Cy5 dyes and run together on one gel. This allowed assessment of how experimental error influenced differential expression analysis. Bias in the log volume ratios was observed, which could be explained by differences in dye background. Further complications are caused by significant gel-to-gel variation in the spot volume ratio distributions. Using DeCyder alone results in an inability to define ratio thresholds for 90 or 95% confidence. An alternative normalization method was thus applied which resulted in improved data distribution and allowed greater sensitivity in analysis. When combined with a standardizing function, this allowed gel-independent thresholds for 90% confidence. The new approach, detailed here, represents a method to greatly improve the success of DIGE data analysis.  相似文献   

2.
This study assesses the ability of a novel family of machine learning algorithms to identify changes in relative protein expression levels, measured using 2-D DIGE data, which support accurate class prediction. The analysis was done using a training set of 36 total cellular lysates comprised of six normal and three cancer biological replicates (the remaining are technical replicates) and a validation set of four normal and two cancer samples. Protein samples were separated by 2-D DIGE and expression was quantified using DeCyder-2D Differential Analysis Software. The relative expression reversal (RER) classifier correctly classified 9/9 training biological samples (p<0.022) as estimated using a modified version of leave one out cross validation and 6/6 validation samples. The classification rule involved comparison of expression levels for a single pair of protein spots, tropomyosin isoforms and alpha-enolase, both of which have prior association as potential biomarkers in cancer. The data was also analyzed using algorithms similar to those found in the extended data analysis package of DeCyder software. We propose that by accounting for sources of within- and between-gel variation, RER classifiers applied to 2-D DIGE data provide a useful approach for identifying biomarkers that discriminate among protein samples of interest.  相似文献   

3.
Renal cell carcinoma (RCC), the most common neoplasm affecting the adult kidney, is characterised by heterogeneity of histological subtypes, drug resistance, and absence of molecular markers. Two-dimensional difference gel electrophoresis (2-D DIGE) technology in combination with mass spectrometry (MS) was applied to detect differentially expressed proteins in 20 pairs of RCC tissues and matched adjacent normal kidney cortex (ANK), in order to search for RCC markers. After gel analysis by DeCyder 6.5 and EDA software, differentially expressed protein spots were excised from Deep Purple stained preparative 2DE gel. A total of 100 proteins were identified by MS out of 2500 spots, 23 and 77 of these were, respectively, over- and down-expressed in RCC. The Principal Component Analysis applied to gels and protein spots exactly separated the two sample classes in two groups: RCC and ANK. Moreover, some spots, including ANXA2, PPIA, FABP7 and LEG1, resulted highly differential. The DIGE data were also confirmed by immunoblotting analysis for these proteins. In conclusion, we suggest that applying 2-D DIGE to RCC may provide the basis for a better molecular characterization and for the discovery of candidate biomarkers.  相似文献   

4.
The new technology, two-dimensional difference gel electrophoresis (2D DIGE), uses fluorescent dyes to simplify the process of detecting and matching proteins between multiple gels by allowing for the separation of up to three separate protein samples within the same gel. In this study, recombinant human cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (hCTLA4lg) was produced in transgenic rice suspension cell cultures and the intracellular proteins were analyzed by 2D DIGE. The highest level of hCTLA4Ig (25.4 mg/L) was obtained five days after induction. The intracellular proteins expressed at both the growth and induction culture stages were separated and analyzed using DeCyder software. At least 2,218 spots were detected with two-fold thresholds and 95% confidence. We found that 29 spots increased and 20 spots decreased in their intensities during the production of recombinant hCTLA4Ig. In addition, the 2D Western blot of hCTLA4Ig revealed that this fusion protein was expressed in a variety of isoforms.  相似文献   

5.
6.
Krogh M  Liu Y  Waldemarson S  Valastro B  James P 《Proteomics》2007,7(23):4235-4244
Differential in-gel electrophoresis (DIGE) experiments allow three protein samples to be run per gel. The three samples are labeled with the spectrally resolvable fluorescent dyes, Cy2, Cy3, and Cy5, respectively. Here, we show that protein-specific dye effects exist, and we present a linear mixed model for analysis of DIGE data which takes dye effects into account. A Java implementation of the model, called DIGEanalyzer, is freely available at http://bioinfo.thep.lu.se/digeanalyzer.html. Three DIGE experiments from our laboratory, with 173, 64, and 24 gels, respectively, were used to quantify and verify the dye effects. DeCyder 5.0 and 6.5 were used for spot detection and matching. The fractions of proteins with a statistically significant (0.001 level) dye effect were 19, 34, and 23%, respectively. The fractions of proteins with a dye effect above 1.4-fold change were 1, 4, and 6%, respectively. The median magnitude of the dye effect was 1.07-fold change for Cy5 versus Cy3 and 1.16-fold change for Cy3 versus Cy2. The maximal dye effect was a seven-fold change. The dye effects of spots corresponding to the same protein tend to be similar within each of the three experiments, and to a smaller degree across experiments.  相似文献   

7.
Two-dimensional gel electrophoresis (2DE) is a central tool of proteome research, since it allows separation of complex protein mixtures at highest resolution. Quantification of gene expression at the protein level requires sensitive visualization of protein spots over a wide linear range. Two-dimensional difference gel electrophoresis (2D DIGE) is a new fluorescent technique for protein labeling in 2DE gels. Proteins are labeled prior to electrophoresis with fluorescent CyDyes trade mark and differently labeled samples are then co-separated on the same 2DE gel. We evaluated 2D DIGE for detection and quantification of proteins specific for glucose or N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1. The experiment was based on 10 parallel 2DE gels. Detection and comparison of the protein spots were performed with the DeCyder trade mark software that uses an internal standard to quantify differences in protein abundance with high statistical confidence; 24 proteins differing in abundance by a factor of at least 1.5 (t test value <10(-9)) were identified. For comparison, another experiment was carried out with four SYPRO-Ruby-stained 2DE gels for each of the two growth conditions; image analysis was done with the ImageMaster trade mark 2D Elite software. Sensitivity of the CyDye fluors was evaluated by comparing Cy2, Cy3, Cy5, SYPRO Ruby, silver, and colloidal Coomassie staining. Three replicate gels, each loaded with 50 microg of protein, were run for each stain and the gels were analyzed with the ImageMaster software. Labeling with CyDyes allowed detection of almost as many protein spots as staining with silver or SYPRO Ruby.  相似文献   

8.
Surface proteins are central to the cell''s ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.Open in a separate windowClick here to view.(76M, flv)  相似文献   

9.
Urinary proteins may provide clues regarding pathogenesis of kidney disease as well as providing markers of disease activity. We employed two-dimensional differential in-gel electrophoretic analysis (2-D DIGE) to assess multiple urine samples in patients with diabetic nephropathy. Patient samples were collected as timed overnight collections. All the patients had longstanding diabetes, impaired renal function, and overt proteinuria. Control and patient urinary protein were analyzed by 2-D DIGE and DeCyder analysis. Ninety-nine spots were significantly regulated in the urine proteome of the diabetic samples, with 63 up- and 36 down-regulated. One spot corresponding to a pI 5-6 and a molecular weight between 45 and 66 kDa was consistently up-regulated by 19-fold across individuals in the diabetic group. Surface-enhanced laser desorption/ionization-time of flight analysis of in-gel tryptic digest of this spot identified this protein as alpha 1 antitrypsin (AAT). ELISA of urine samples from a separate group of patients and controls confirmed a marked increase of AAT in diabetic patients. Immunostaining of human diabetic kidneys revealed up-regulation of AAT in areas of renal fibrosis. In conclusion, we developed a method to analyze numerous urine samples from patients and allowed for detection and identification of regulated urine protein spots.  相似文献   

10.
The study of changes in protein levels between samples derived from cells representing different biological conditions is a key to the understanding of cellular function. There are two main methods available that allow both for global scanning for significantly varying proteins and targeted profiling of proteins of interest. One method is based on 2-D gel electrophoresis and image analysis of labelled proteins. The other method is based on LC-MS/MS analysis of either unlabelled peptides or peptides derived from isotopically labelled proteins or peptides. In this study, the non-labelling approach was used involving a new software, DeCyder MS Differential Analysis Software (DeCyder MS) intended for automated detection and relative quantitation of unlabelled peptides in LC-MS/MS data.Total protein extracts of E. coli strains expressing varying levels of dihydrofolate reductase and integron integrase were digested with trypsin and analyzed using a nanoscale liquid chromatography system, Ettan MDLC, online connected to an LTQTM linear ion-trap mass spectrometer fitted with a nanospray interface. Acquired MS data were subjected to DeCyder MS analysis where 2-D representations of the peptide patterns from individual LC-MS/MS analyses were matched and compared.This approach to unlabelled quantitative analysis of the E. coli proteome resulted in relative protein abundances that were in good agreement with results obtained from traditional methods for measuring protein levels.  相似文献   

11.
Several solid tumors are characterized by poor prognosis and few effective treatment options, other than palliative chemotherapy in the recurrent/metastatic setting. Epidermal growth factor receptor (EGFR) has been considered an important anticancer target because it is involved in the development and progression of several solid tumors; however, only a subset of patients show a clinically meaningful response to EGFR inhibition, particularly to EGFR tyrosine kinase inhibitors such as gefitinib. We have recently demonstrated synergistic antitumor effect of the histone deacetylase inhibitor vorinostat combined with gefitinib. To further characterize the interaction between these two agents, cellular extracts from Hep‐2 cancer cells that were untreated or treated for 24 h with either vorinostat or gefitinib alone or with a vorinostat/gefitinib combination were analyzed using 2‐D DIGE. Software analysis using DeCyder was performed, and numerous differentially expressed protein spots were visualized between the four examined settings. Using MALDI‐TOF MS and ESI‐Ion trap MS/MS, several differentially expressed proteins were identified; some of these were validated by Western blotting. Finally, a pathway analysis of experimental data performed using MetaCore highlighted a relevant relationship between the identified proteins and additional potential effectors. In conclusion, we performed a comprehensive analysis of proteins regulated by vorinostat and gefitinib, alone and in combination, providing a useful insight into their mechanisms of action as well as their synergistic interaction.  相似文献   

12.
Papaya (Carica papaya L.) hosts the only described laticifer-infecting virus (Papaya meleira virus, PMeV), which is the causal agent of papaya sticky disease. To understand the systemic effects of PMeV in papaya, we conducted a comprehensive proteomic analysis of leaf samples from healthy and diseased plants grown under field conditions. First, a reference 2-DE map was established for proteins from healthy samples. A total of 486 reproducible spots were identified, and MALDI-TOF-MS/MS data identified 275 proteins accounting for 159 distinct proteins from 231 spots that were annotated. Second, the differential expression of proteins from healthy and diseased leaves was determined through parallel experiments, using 2-DE and DIGE followed by MALDI-TOF-MS/MS and LC-IonTrap-MS/MS, respectively. Conventional 2-DE analysis revealed 75 differentially expressed proteins. Of those, 48 proteins were identified, with 26 being upregulated (U) and 22 downregulated (D). In general, metabolism-related proteins were downregulated, and stress-responsive proteins were upregulated. This expression pattern was corroborated by the results of the DIGE analysis, which identified 79 differentially expressed proteins, with 23 identified (17 U and 6 D). Calreticulin and the proteasome subunits 20S and RPT5a were shown to be upregulated during infection by both 2-DE and DIGE analyses. These data may help shed light on plant responses against stresses and viral infections.  相似文献   

13.
Acinetobacter baumannii has been identified by the Infectious Diseases Society of America as one of the six pathogens that cause majority of hospital infections. Increased resistance of A.baumannii even to the latest generation of β-lactams like carbapenem is an immediate threat to mankind. As inner-membrane fraction plays a significant role in survival of A.baumannii, we investigated the inner-membrane fraction proteome of carbapenem-resistant strain of A.baumannii using Differential In-Gel Electrophoresis (DIGE) followed by DeCyder, Progenesis and LC-MS/MS analysis. We identified 19 over-expressed and 4 down-regulated proteins (fold change>2, p<0.05) in resistant strain as compared to reference strain. Some of the upregulated proteins in resistant strain and their association with carbapenem resistance in A.baumannii are: i) β-lactamases, AmpC and OXA-51: cleave and inactivate carbapenem ii) metabolic enzymes, ATP synthase, malate dehydrogenase and 2-oxoglutarate dehydrogenase: help in increased energy production for the survival and iii) elongation factor Tu and ribosomal proteins: help in the overall protein production. Further, entry of carbapenem perhaps is limited by controlled production of OmpW and low levels of surface antigen help to evade host defence mechanism in developing resistance in A.baumannii. Present results support a model for the importance of proteins of inner-membrane fraction and their synergistic effect in the mediation of resistance of A.baumannii to carbapenem.  相似文献   

14.
Seed development is a complex process governed by highly coordinated changes in the expression of a large protein set. DIGE (Difference Gel Electrophoresis)-based proteomics was used to study developing Chinese fir seeds. 153 spots were obtained by using the analysis of DeCyder software (v. 6.5). Cluster analysis showed that they could be joined into three main groups. Eleven spots, more actively expressed at early cotyledonary stage of developing seeds, were identified by LC/MS/MS (tandem MS). Ten spots were identified by searching NCBInr or EST databases. They included two legumin-like storage proteins, LEA protein, small heat-shock protein, PR10-1.13, a protein similar to eukaryotic translation initiation factor, a protein similar to maternal effect embryo arrest 51, ORF115, a protein similar to monodehydroascorbate reductase, and unknown proteins. The potential function of these proteins during the precotyledonary stage of seed development was discussed.  相似文献   

15.
Indian mustard (Brassica juncea L.) is known to both accumulate and tolerate high levels of heavy metals from polluted soils. To gain a comprehensive understanding of the effect of cadmium (Cd) treatment on B. juncea roots, two quantitative proteomics approaches – fluorescence two‐dimensional difference gel electrophoresis (2‐D DIGE) and multiplexed isobaric tagging technology (iTRAQ) – were implemented. Several proteins involved in sulfur assimilation, redox homeostasis, and xenobiotic detoxification were found to be up‐regulated. Multiple proteins involved in protein synthesis and processing were down‐regulated. While the two proteomics approaches identified different sets of proteins, the proteins identified in both datasets are involved in similar biological processes. We show that 2‐D DIGE and iTRAQ results are complementary, that the data obtained independently using the two techniques validate one another, and that the quality of iTRAQ results depends on both the number of biological replicates and the number of sample injections. This study determined the involvement of enzymes such as peptide methionine sulfoxide reductase and 2‐nitropropane dioxygenase in alternatives redox‐regulation mechanisms, as well as O‐acetylserine sulfhydrylase, glutathione‐S‐transferase and glutathione‐conjugate membrane transporter, as essential players in the Cd hyperaccumation and tolerance of B. juncea.  相似文献   

16.
During the peri-implantation period, molecular signaling between embryo and endometrium (layer of tissue lining the uterus lumen) is supposed to be crucial for the maintenance of pregnancy. To investigate embryo-induced alterations in the proteome of bovine endometrium in the preattachment period (day 18), we used monozygotic cattle twins (generated by embryo splitting) as a model eliminating genetic variability as a source for proteome differences. One of the twins was pregnant after the transfer of two in vitro produced blastocysts, while the corresponding twin received a sham-transfer and served as a nonpregnant control. The two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) analysis of the endometrium samples of three twin pairs (pregnant/nonpregnant) revealed four proteins with significantly higher abundance (p < 10(-9)) in each sample derived from the pregnant animals: Rho GDP dissociation inhibitor beta; 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD); soluble NADP(+)-dependent isocitrate dehydrogenase 1; and acyl-CoA-binding protein. To verify the accuracy of the 2-D DIGE quantification, the abundances of 20 alpha-HSD were quantified by a targeted cleavable isotope-coded affinity tag (ICAT) approach. The mass spectrometry-based ICAT quantification matched perfectly the results obtained by 2-D DIGE quantification, demonstrating the accuracy of our data. These results demonstrate that our model (monozygotic twins) in combination with the appropriate analytical tools is particularly suitable for the detection of the proteins involved in the embryo-maternal interactions.  相似文献   

17.
The reproducibility of conventional two-dimensional (2D) gel electrophoresis can be improved using differential in-gel electrophoresis (DIGE), a new emerging technology for proteomic analysis. In DIGE, two pools of proteins are labeled with 1-(5-carboxypentyl)-1'-propylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5-carboxypentyl)-1'-methylindodi-carbocyanine halide (Cy5) N-hydroxysuccinimidyl ester fluorescent dyes, respectively. The labeled proteins are mixed and separated in the same 2D gel. 2D DIGE was applied to quantify the differences in protein expression between laser capture microdissection-procured esophageal carcinoma cells and normal epithelial cells and to define cancer-specific and normal-specific protein markers. Analysis of the 2D images from protein lysates of approximately 250,000 cancer cells and normal cells identified 1038 protein spots in cancer cell lysates and 1088 protein spots in normal cell lysates. Of the detected proteins, 58 spots were up-regulated by >3-fold and 107 were down-regulated by >3-fold in cancer cells. In addition to previously identified down-regulated protein annexin I, tumor rejection antigen (gp96) was found up-regulated in esophageal squamous cell cancer. Global quantification of protein expression between laser capture-microdissected patient-matched cancer cells and normal cells using 2D DIGE in combination with mass spectrometry is a powerful tool for the molecular characterization of cancer progression and identification of cancer-specific protein markers.  相似文献   

18.
MOTIVATION: Difference in-gel electrophoresis (DIGE)-based protein expression analysis allows assessing the relative expression of proteins in two biological samples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a reference sample is also used (Cy2 CyDye) for spot matching during image analysis and volume normalization. The standard statistical techniques to identify differentially expressed (DE) proteins are the calculation of fold-changes and the comparison of treatment means by the t-test. The analyses rarely accounts for other experimental effects, such as CyDye and gel effects, which could be important sources of noise while detecting treatment effects. RESULTS: We propose to identify DIGE DE proteins using a two-stage linear mixed model. The proposal consists of splitting the overall model for the measured intensity into two interconnected models. First, we fit a normalization model that accounts for the general experimental effects, such as gel and CyDye effects as well as for the features of the associated random term distributions. Second, we fit a model that uses the residuals from the first step to account for differences between treatments in protein-by-protein basis. The modeling strategy was evaluated using data from a melanoma cell study. We found that a heteroskedastic model in the first stage, which also account for CyDye and gel effects, best normalized the data, while allowing for an efficient estimation of the treatment effects. The Cy2 reference channel was used as a covariate in the normalization model to avoid skewness of the residual distribution. Its inclusion improved the detection of DE proteins in the second stage.  相似文献   

19.
激素型肾阳虚动物肝线粒体蛋白质组与能量代谢相关性   总被引:11,自引:0,他引:11  
应用凝胶内差异显示电泳技术研究肾阳虚大鼠肝线粒体蛋白质组,并从肝线粒体蛋白质组角度阐述肾阳虚与能量代谢的关系.8个分别来自于肾阳虚大鼠和正常大鼠的肝线粒体蛋白质样品(各4个)分别用荧光染料Cy3、Cy5标记,以及8个样品等量混合物用Cy2标记作为内标,每一Cy3、Cy5标记样品与Cy2标记的内标等量混合后在同一胶中进行电泳分离,经不同光激发后扫描得到不同样品的蛋白质组图谱.经DeCyder软件结合内标分析,以肾阳虚组动物与正常组动物肝线粒体蛋白质相差1.2倍以上的蛋白作为差异蛋白,实验共获得16个差异蛋白质,经质谱测定和与蛋白质文库比对,鉴定11个蛋白质.其中,肾阳虚动物热休克蛋白60和70、肌氨酸脱氢酶、氨甲酰磷酸合成酶、亚硫酸盐氧化酶、ATP合酶、醛脱氢酶和NADH脱氢酶表达量增加,而丙酮酸脱氢酶、α酮戊二酸脱氢酶、脂酰辅酶A脱氢酶和鸟氨酸氨基转移酶表达量降低.实验表明,肾阳虚动物能量代谢相关酶的变化与肾阳虚的临床虚寒症状有关.  相似文献   

20.
Retinal ischemia contributes to multiple ocular diseases while aminoguanidine (AMG) treatment significantly inhibits the neuronal and vascular degeneration due to acute retinal ischemia and reperfusion (I/R) injury. In the present study, 2‐D DIGE was applied to profile global protein expression changes due to retinal I/R injury, and the protection effects mediated by AMG. Retinal ischemia was induced by elevated intraocular pressure to 80–90 mmHg for 2 h, and reperfusion was established afterward. Retinal tissues were collected 2 days after I/R injury. After 2‐D DIGE analysis, a total of 96 proteins were identified. Among them, 28 proteins were identified within gel spots whose intensities were normalized by AMG pretreatment, pathway analysis indicated that most were involved in glycolysis and carbohydrate metabolism. Selected enzymes identified by MS/MS within these pathways, including transketolase, triosephosphate isomerase 1, aldolase C, total enolase, and pyruvate kinase were validated by quantitative Western blots. Glycolytic enzymes and other differentially regulated proteins likely play previously unrecognized roles in retinal degeneration after I/R injury, and inhibition of the resulting metabolic changes, using pharmacologically agents such as AMG, serve to inhibit the changes in metabolism and mitigate retinal degeneration. Select glycolytic enzymes may provide novel therapeutic targets for inhibiting the neuronal and vascular degeneration after retinal I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号