首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gibberellin (GA) levels in leaf sheaths and in elongating leaf bases of perennial ryegrass ( Lolium perenne L. cv. Bravo) were monitored in undefoliated and defoliated plants. Nine C-13-hydroxylated GAs (GA8, GA97, GA29, GA1, GA20, GA44, GA19, GA17, GA53) and one C-13-non-hydroxylated GA (GA9) were identified by combined gas chromatography-mass spectrometry in leaf extracts. The total level of GA8, GA29, GA1, GA20, GA44, GA19 and GA53, determined by selected ion monitoring, was 7 times higher in elongating leaf bases than in mature leaf sheaths. In both leaf tissues, defoliation induced an increase in GA53 level, while GA20 and GA1 levels decreased, suggesting that the GA53→GA44, as well as GA19→GA20, conversions were slowed down. The roles of GA1 in the control of leaf elongation and fructan mobilization following defoliation are discussed.  相似文献   

2.
The allocation of carbon to shoots, roots, soil and rhizosphere respiration in barrel medic (Medicago truncatulaGaertn.) before and after defoliation was determined by growing plants in pots in a labelled atmosphere in a growth cabinet. Plants were grown in a 14CO2-labelled atmosphere for 30 days, defoliated and then grown in a 13CO2-labelled atmosphere for 19 days. Allocation of 14C-labelled C to shoots, roots, soil and rhizosphere respiration was determined before defoliation and the allocation of 14C and 13C was determined for the period after defoliation. Before defoliation, 38.4% of assimilated C was allocated below ground, whereas after defoliation it was 19.9%. Over the entire length of the experiment, the proportion of net assimilated carbon allocated below ground was 30.3%. Of this, 46% was found in the roots, 22% in the soil and 32% was recovered as rhizosphere respiration. There was no net translocation of assimilate from roots to new shoot tissue after defoliation, indicating that all new shoot growth arose from above-ground stores and newly assimilated carbon. The rate of rhizosphere respiration decreased immediately after defoliation, but after 8 days, was at comparable levels to those before defoliation. It was not until 14 days after defoliation that the amount of respiration from newly assimilated C (13C) exceeded that of C assimilated before defoliation (14C). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Moderate experimental defoliation stimulated root respiration and phosphate absorption in two tundra graminoids, Eriophorum vaginatum and Carex aquatilis, growing under nutrient-limited field conditions in northern Alaska. The increase in phosphate absorption rate following defoliation of Eriophorum was associated with a decrease in root phosphate and available carbohydrate contents per unit root length but a constant root nitrogen content. Only after four repeated defoliations did phosphate absorption rate decrease below control levels. We suggest that the stimulation of root respiration and phosphate absorption immediately following defoliation resulted from lowered root phosphorus status as nutrient reserves were reallocated to support shoot regrowth. Root growth was affected more severely by defoliation than was root activity. Two or more defoliations reduced root elongation, initiation and weight per unit length, but root mortality increased only after four defoliations. Carex aquatilis, a species with large belowground biomass, was less sensitive to defoliation than Eriophorum. Phosphate absorption rate increased only after four defoliations in this species, and root elongation, initiation and mortality were affected only by the most severe clipping regimes. Responses of plants to repeated defoliation over two growing seasons were consistent with results of short-term studies.  相似文献   

4.
Infra-red gas analysis and a quantitative radiocarbon tracertechnique were used to measure photosynthesis, and the export,distribution and utilization of current assimilate in the regrowthof leaf tissue and the growth of stem and root of partially-defoliateduniculm barley plants. After defoliation, which removed allleaf tissue above the ligule of leaf 3, the rate of photosynthesisof the remaining two older leaves fell to 90–95 per centof that of control leaves, but they exported more of their assimilatedcarbon to meristems elsewhere in the plant during the first48 h after the defoliation. The level of export from the twoolder leaves began to decline when new leaf tissue regrew fromthe shoot apex, and fell below that of the control leaves 4days after defoliation. The two older leaves supplied the assimilateused in the regrowth of new leaf tissue immediately after defoliation:previously they had exported most of their assimilate to root.There was no evidence that ‘reserves’ were mobilizedto meet the needs of regrowth at leaf meristems or, indeed,of the growth in stem and root; current photosynthesis suppliedsufficient assimilate to account for all observed growth. Ingeneral, the plants responded to defoliation with a rapid andmarked re-allocation of assimilate from root to leaf meristems,with the result that root growth was severely retarded but newleaf tissue grew at 70–100 per cent of the rate observedin control plants.  相似文献   

5.
BACKGROUND AND AIMS: Both nutrient availability and defoliation affect the carbon-nutrient balance in plants, which in turn influences biomass allocation (e.g. shoot-to-root ratio) and leaf chemical composition (concentration of nitrogen and secondary compounds). In this study it is questioned whether defoliation alters biomass allocation and chemical defence in a similar fashion to the response to nutrient deficiency. METHODS: Current-year seedlings of Quercus serrata were grown with or without removal of all leaves at three levels of nutrient availability. KEY RESULTS: Plant nitrogen concentration (PNC), a measure of the carbon-nutrient balance in the plant, significantly decreased immediately after defoliation because leaves had higher nitrogen concentrations than stems and roots. However, PNC recovered to levels similar to or higher than that of control plants in 3 or 6 weeks after the defoliation. Nitrogen concentration of leaves produced after defoliation was significantly higher than leaf nitrogen concentration of control leaves. Leaf mass per plant mass (leaf mass ratio, LMR) was positively correlated with PNC but the relationship was significantly different between defoliated and control plants. When compared at the same PNC, defoliated plants had a lower LMR. However, the ratio of the leaf to root tissues that were newly produced after defoliation as a function of PNC did not differ between defoliated and control plants. Defoliated plants had a significantly lower concentration of total phenolics and condensed tannins. Across defoliated and control plants, the leaf tannin concentration was negatively correlated with the leaf nitrogen concentration, suggesting that the amount of carbon-based defensive compounds was controlled by the carbon-nutrient balance at the leaf level. CONCLUSIONS: Defoliation alters biomass allocation and chemical defence through the carbon-nutrient balance at the plant and at the leaf level, respectively.  相似文献   

6.
The effects of completely defoliating sugar beet at different dates from May to October were examined in four years. In each year there were plots given the usual nitrogen fertiliser application to the seedbed, and also in two of the years plots given no nitrogen. At harvest in mid-November, minimum root weights followed defoliation in July or August, but defoliation in August or later gave minimum sugar contents. When nitrogen was applied to the seedbed sugar yields were smallest after August defoliation; in the absence of nitrogen, July defoliation gave the lowest sugar yields, root yield being smaller but sugar content usually greater than with nitrogen. Up to 40% of the sugar yield was lost by July or August defoliation and late defoliation increased some of the impurities in the root juice. Yields, and recovery from defoliation, were greater with nitrogen than without. Partial defoliation in May had relatively little effect on yield. Defoliation affected the incidence of virus yellows differently in different years.  相似文献   

7.
The study of carbohydrate metabolism in perennial ryegrass (Lolium perenne L. cv. Bravo) during the first 48 h of regrowth showed that fructans from elongating leaf bases were hydrolysed first whereas fructans in mature leaf sheaths were degraded only after a lag of 1.5 h. In elongating leaf bases, the decline in fructan content occurred not only in the differentiation zone (30–60 mm from the leaf base), but also in the growth zone. Unlike other soluble carbohydrates, the net deposition rate of fructose remained positive and even rose during the first day following defoliation. The activity of fructan exohydrolase (FEH; EC 3.2.1.80) was maximal in the differentiation zone before defoliation and increased in all segments, but peaked in the growth zone after defoliation. These data strongly indicate that fructans stored in the leaf growth zone were hydrolysed and recycled in that zone to sustain the refoliation immediately after defoliation. Despite the depletion of carbohydrates, leaves of defoliated plants elongated at a significantly higher rate than those of undefoliated plants, during the first 10 h of regrowth. This can be partly attributed to the transient increase in water and nitrate deposition rate. The results are discussed in relation to defoliation tolerance. Received: 16 June 2000 / Accepted: 17 October 2000  相似文献   

8.
The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year.  相似文献   

9.
The effects of dairy cow urine and defoliation severity on biological nitrogen fixation and pasture production of a mixed ryegrass-white clover sward were investigated over 12 months using mowing for defoliation. A single application of urine (equivalent to 746 kg N ha–1), was applied in late spring to plots immediately after light and moderately-severe defoliation (35 mm and 85 mm cutting heights, respectively) treatments were imposed. Estimates of percentage clover N derived from N2 fixation (%Ndfa) were compared by labelling the soil with 15N either by applying a low rate of 15N-labelled ammonium sulphate, immobilising 15N in soil organic matter, adding 15N to applied urine, or by utilising the small differences in natural abundance of 15N in soil. Urine application increased annual grass production by 85%, but had little effect on annual clover production. However, urine caused a marked decline in %Ndfa (using an average of all 15N methods) from 84% to a low of 22% by 108 days, with recovery to control levels taking almost a year. As a result, total N fixed (in above ground clover herbage) was reduced from 232 to 145 kg N ha–1 yr–1. Moderately–severe defoliation had no immediate effect on N2 fixation, but after 108 days the %Ndfa was consistently higher than light defoliation during summer and autumn, and increased by up to 18%, coinciding with an increase in growth of weeds and summer-grass species. Annual N2 fixation was 218 kg N ha–1 yr–1 under moderately-severe defoliation compared to 160 kg N ha–1 yr–1 under light defoliation. Estimates of %Ndfa were generally similar when 15N-labelled or immobilised 15N were used to label soil regardless of urine and defoliation severity. The natural abundance technique gave highly variable estimates of %Ndfa (–56 to 24%) during the first 23 days after urine application but, thereafter, estimates of %Ndfa were similar to those using 15N-labelling methods. In contrast, in urine treated plots the use of 15N-labelled urine gave estimates of %Ndfa that were 20–30% below values calculated using conventional 15N-labelling during the first 161 days. These differences were probably due to differences in the rooting depth between ryegrass and white clover in conjunction with treatment differences in 15N distribution with depth. This study shows that urine has a prolonged effect on reducing N2 fixation in pasture. In addition, defoliation severity is a potential pasture management tool for strategically enhancing N2 fixation.  相似文献   

10.
Axillary bud number, bud respiratory activity, and photosyntheticcanopy re-establishment after defoliation were determined fortwo bunchgrass species, Agropyron desertorum and Agropyron spicatum,which were exposed to draughted, natural or irrigated conditions.These field treatments were repeated annually on the same plantsfor the period 1984–1986. Bud respiratory activity wasexamined using the tetrazolium test, which was validated withthe vital stain Evan's blue, at the end of the study In spring of the third year, the number of axillary buds ontillers of both species was lowest in the drought treatment.Most of these buds, and those observed immediately after defoliationin 1985, were metabolically active. These results indicate thatafter mid-season defoliation under drought, when no re-growthoccurred, the re-growth capacity was not limited by bud numberor viability. After 3 years of defoliation, tiller number andgrowth in both species were reduced in the following springunder all water regimes. This reduction was present 1 year earlierin the drought treatment than in the treatments with higherwater availability. Permanent dormancy or death of the replacementaxillary meristems can explain this plant response. Continueddefoliation of the tillers under drought would reduce the photosyntheticarea further, and probably affect the persistence of these speciesin the community Agropyron desertorum, Agropyron spicatum, crested wheatgrass, bluebunch wheatgrass, drought, defoliation, re-growth, bud viability, tetrazolium, Evan's blue  相似文献   

11.
The impact of defoliation by fall armyworm, Spodoptera frugiperda (J. E. Smith), on the photosynthetic rates of injured, individual wheat, Triticum aestivum L., leaves and the impact of different spatial patterns of artificial insect defoliation on photosynthesis of remaining leaf tissue of injured, individual wheat leaves were evaluated in this study. Photosynthesis, stomatal conductance, transpiration, and chlorophyll a fluorescence were recorded in the flag-leaves of wheat plants 1 and 24 h after defoliation in 2003 and at 1 h, 24 h, 7 d, and 14 d after defoliation in 2004. Photosynthesis of injured leaves was not significantly affected by any defoliation treatment (i.e., control, natural, and artificial). Similarly, we did not observe interactions between defoliation treatments and time after defoliation. Stomatal conductance was significantly affected by time after defoliation and by the interaction between defoliation treatment and time after defoliation. However, in general, our results showed that wheat responded similarly to insect defoliation and artificial defoliation, which, therefore, may be used to simulate leaf mass consumption. Spatial defoliation patterns had a significant effect on photosynthetic parameters of injured leaves, but responses were dependent on plant developmental stages. The chlorophyll a fluorescence data revealed no significant effects from any defoliation pattern on the photochemical efficiency of the injured leaf. No significant interactions between defoliation patterns and time after defoliation were observed. Our findings reveal that the spatial pattern of defoliation in wheat affects photosynthetic and other gas exchange responses, which suggests that when simulating insect defoliation in wheat, researchers need to be cognizant of the defoliation pattern to adequately simulate insect defoliation.  相似文献   

12.
We conducted an experiment with the dual aims of (1) examining the feasibility of establishing a species-rich grassland using a commercially available grass and wild-flower seed mixture and (2) examining the effects of different defoliation and fertilizer managements on the productivity, species richness, diversity, and composition of a species-rich grassland established on a site reclaimed after opencast coal mining. The use of the seed mixture successfully established a sward of some 18–25 species per square meter. The species composition was enriched to some extent by recruitment of unsown species, principally from the soil seed bank. Hay-type defoliation management produced greater dry matter yield and species richness than grazing defoliation, but grazing defoliation produced greater species diversity. Fertilizer application had no significant effect on dry matter production but reduced species diversity. Ordination analysis revealed that both defoliation and fertilizer management significantly affected species composition. The response obtained by individual species was explicable largely by their comparative biology.  相似文献   

13.
The contribution of pre-defoliation reserves and current assimilates to leaf and root growth was examined in Lolium perenne L. during regrowth after defoliation. Differential steady-state labelling with 13C (CO2 with δ13C = -0.0281 and -0.0088) and 15N (NO3? with 1.0 and 0.368 atom percentage, i.e. δ15N = 1.742 and 0.0052, respectively) was applied for 2 weeks after defoliation. Rapidly growing tissues were isolated, i.e. the basal elongation and maturation zones of the most rapidly expanding leaves and young root tips, with a biomass turnover rate > 1 d?1. C and N weights of the elongation zone showed a transient decline. The dry matter and C concentration in fresh biomass of leaf growth zones transiently decreased by up to 25% 2 d after defoliation, while the N concentration remained constant. This ‘dilution’ of growth zone C indicates a decreased net influx of carbohydrates relative to growth-related influx of water and N in expanding cells, immediately after defoliation. Recovery of the total C and N weights of the leaf elongation zone coincided with net incorporation of currently absorbed C and N, as shown by the kinetics of δ13C and atom percentage 15N in the growth zones after defoliation. C isotope discrimination (Δ13C) in leaf growth zones was about 23‰, 1–2‰ higher than the Δ in root tips. Δ15N in the leaf and root growth zones was 10±3‰. The leaf elongation zones (at 0–0.03 m from the tiller base) and the distant root tips (about 0.2 m from the base) exhibited similar kinetics of current C and N incorporation. The amount of pre-defoliation C and N in the growth zones, expressed as a fraction of total C and N, decreased from 1.0 to 0.5 at 3 (C) and 5 (N) d after defoliation, and to 0.1 at 5 (C) and 14 (N) d after defoliation. Thus, the dependence of growth zones on current assimilate supply was significant, and stronger for C than for N. The important roles of current assimilates (as compared to pre-defoliation reserves) and ‘dilution’ of dry matter in regrowth after defoliation are discussed in relation to the method of labelling and the functional and morphological heterogeneity of shoot tissues.  相似文献   

14.
The dynamics of phenolic compounds, flavonols, catechines, tannins, and soluble sugars in the leaves of the silver birch Betula pendula Roth after strong (75%) and total (100%) artificial defoliation was studied. It was shown that the flavonol content in the leaves did not change after strong and total defoliation, while the amount of tannins did not change during the first 15 days but increased later on 1 and 2 years after 75% and 100% defoliation. The catechine content did not change during the first 15 days and increased later on 1 year after strong and total defoliation; however, it returned to the level of control plants 2 years after both types of defoliations. The amount of soluble sugars in the leaves increased 2 days after 75% defoliation; however, their content conformed to that in control plants after 10 days and it remained later 1 and 2 years after the damage. The amount of soluble sugars in the leaves also did not change 1 year after 100% defoliation.  相似文献   

15.
An ongoing change in soybean production gaining popularity in the United States is a reduction in row spacing. Plant canopy closure is quicker and leaf area index is greater, thus yield is usually higher. Because yield response to insect defoliation is primarily a function of how defoliation causes changes in light interception, the possibility exists that the insect-injury-yield-loss relationship might differ among row widths. Soybean was grown in four states using similar methodologies. Insect defoliation was simulated by picking leaflets based on an insect defoliation model. Plant growth measurements were taken immediately following the end of defoliation. Numerous independent variables were measured or calculated, including percentage light interception, leaf area index, percentage defoliation, and leaf area per plot. Analyses of covariance were conducted on the resultant data to determine whether insect-injury-yield-loss relationships interact with row width. A significant interaction would indicate that the impact of the variables on yield was dependent on the row width, whereas a nonsignificant interaction would suggest that the relationship between the variables and yield is similar at all row widths. Few significant interactions were obtained, indicating that the impact of the variables on yield is similar across row widths. Because of the lack of significant interactions, the insect-injury-yield-loss relationships previously developed should be usable across varying row widths. Thus, treatment decisions based on light interception and leaf area indices, both considered more appropriated measures of insect injury, should be applicable for all row spacings.  相似文献   

16.
Common ash seedlings, grown in controlled conditions, were completelydefoliated 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 d afterthe completion of stem elongation. Complete defoliation up to80 d after the completion of stem elongation caused renewedgrowth of terminal buds. The buds had changed from a reversiblestate to an irreversible state by 80 d after the cessation ofstem elongation, as shown by the lack of response to defoliation.When leaves were removed before the cessation of stem elongation,rather than after, a similar enhancement of stem growth wasobserved. Partial defoliation experiments indicated that thedegree and location of defoliation play important roles in theplant response. Complete defoliation or complete removal ofleaflets was necessary to obtain 100% budburst. Apical dominancewas altered by partial defoliation treatments such that thebasal axillary buds began to grow out. Partial defoliation,especially before the cessation of stem elongation, was prejudicialto stem elongation. These results suggest that the inductionof compensatory growth mechanisms in ash seedlings require athreshold level of defoliation. Copyright 2000 Annals of BotanyCompany Fraxinus excelsior L., common ash, defoliation, growth, paradormancy  相似文献   

17.
In experiments under controlled growth conditions it was examined how flooding affected the responses of the invasive plant Alternanthera philoxeroides to defoliation. In drained and flooded conditions, plants were subjected to five defoliation levels: 0, 10, 50, 90% removal of leaf tissue and apex removal (90% leaf tissue plus apical bud removal). Plants were harvested weekly for five weeks. In drained conditions, plant biomasses including total biomass, shoot biomass and root biomass after 50% defoliation rapidly recovered to the control plant level. They were significantly lower for the 90% defoliation and apex removal treatments compared to control plants throughout the experiment. In flooded conditions, total biomass and shoot biomass after 50% defoliation, 90% defoliation, and apex removal treatments could return to control plant levels before the end of the experiment. In 90% defoliation and apex removal treatments root to shoot biomass ratios of both drained and flooded plants were initially much higher than in control plants, but the difference disappeared rapidly. The final biomasses decreased with increased defoliation intensity in drained conditions, but no significant difference was generally found in any of the defoliation treatments in flooded conditions. The rapid re-growth of A. philoxeroides plants after defoliation may partly be responsible for its invasion success. However, defoliation capable of removing 90% of the leaf tissue may be desirable in restricting the growth of this invasive species in drained conditions.  相似文献   

18.
The carbon economy of subterranean clover swards subjected tothree defoliation treatments (removal of 30, 70 and 80% of shootdry weight) was compared with that of uncut swards. Carbon dioxideexchange in shoots and roots was measured independently 0, 4,8 and 12 d after defoliation. The respiration linked to nitrogenaseactivity was estimated by comparing root respiration measuredin an atmosphere containing 3% oxygen with the respiration in21% oxygen. Net photosynthesis fell by up to 100% immediately after defoliation.There was a decline of over 60percnt; in root respiration bythe end of the first light period, composed of a rapid declineof 70% in nitrogenase-linked respiration in all treatments anda slower decline of nearly 40% in root plus nodule growth andmaintenance respiration in the more severe treatments. Recoveryof net photosynthesis to rates achieved by uncut swards occurredover 4 d in the 30% cut treatment and at least 12 d in moresevere treatments. Whilst recovery of photosynthesis was theprinciple determinant of recovery of net positive carbon balance,the early reduction in respiration facilitated this outcome.After the immediate decline in nitrogenase-linked respiration,recovery in this component of respiration appeared to be linkedwith the recovery in net photosynthesis (approximately 10% ofnet photosynthesis). Carbon budgets revealed priorities in allocation towards leafin the first 5 d and later also towards root growth in severelydefoliated swards. Root respiration comprised a large respiratorycost (up to 75% of net photosynthesis) during early regrowth. Carbon budget, defoliation, N2 fixation, photosynthesis, regrowth, respiration, subterranean clover, Trifolium subterraneum L  相似文献   

19.
The effects of partial defoliation on the gas exchange characteristicsof the remaining leaves were studied in cloned Betula pendulaL. saplings grown in pots on two different soil types: prefertilizedpeat and unfertilized sand (Experiment 1). The responses ofundamaged leaves to different damage modes of leaf laminae werealso studied using saplings grown on prefertilized peat only(Experiment 2). In Experiment 1, removal of the upper leaves,which represented about half the total leaf area, approximatelydoubled the mean net photosynthetic rates of the remaining lowerleaves on both soil types and at both measuring dates (12–13d and 34 d after assigning the treatments). However, when thelower leaves were removed there was a temporary increase inthe mean net photosynthetic rates of the remaining expandedupper leaves only in the plants grown on sand. In Experiment2, the removal of laminae caused a similar increase in the light-saturatednet photosynthetic rates of the remaining leaves, irrespectiveof whether the laminae were removed totally immediately or graduallyin three stages. The magnitude of the photosynthetic responsewas determined by the amount of leaf tissue removed and wasindependent of the way in which it was removed. We concludethat the increase in the photosynthetic rates of the remainingleaves after partial defoliation may be attributed to the alleviatedcompetitive status among the leaves rather than to the decreasedsource/sink ratio within a plant. Key words: Partial defoliation, net photosynthesis, Betula pendula, birch sapling, herbivory  相似文献   

20.
The effect of defoliation on leaf elongation rate (LER) and on the spatial distribution of epidermal cell lengths in the leaf growth zone was studied in vegetative main tillers of perennial ryegrass (Lolium perenne L. cv Modus) grown in a controlled environment. A new material approach was used to analyse the responses of epidermal cell expansion and production during the initial, non‐steady growth phase following defoliation. The analysis involved assigning an identity to individual expanding cells, assessing the displacement and estimating the expansion of cells with assigned identity during day 1 and day 2 after defoliation. LER decreased by 34% during the first 2 d after defoliation and did not recover to the pre‐defoliation rate within the 14 day regrowth period. Decreased LER on day 1 and day 2 after defoliation was associated with (i) a decrease in the length of the leaf growth zone; (ii) a decrease in the length at which epidermal cells stopped expanding; (iii) a reduced expansion of cells at intermediate growth stages; and (iv) a reduction in cell production (i.e. division) and an associated decrease in the number of expanding cells in the growth zone. However, defoliation had no effect on the expansion of cells located in the proximal part of the growth zone. Reduced LER at 14 d after defoliation was associated with a reduced cell production rate (27% lower than the pre‐defoliation rate) and decreased final cell size ( ? 28%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号