共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient splicing of two yeast mitochondrial introns controlled by a nuclear-encoded maturase. 总被引:5,自引:1,他引:5 下载免费PDF全文
bI4 maturase encoded by the fourth intron of the yeast mitochondrial cytochrome b gene, controls the splicing of both the fourth intron of the cytochrome b gene and the fourth intron of the gene encoding subunit I of cytochrome oxidase. It has been shown previously that a cytoplasmically translated hybrid protein composed of the pre-sequence of subunit 9 of Neurospora ATPase fused to a part of the bI4 maturase can be guided to mitochondria where it could compensate maturase deficiencies. This in vivo complementation of maturase mutants can be easily estimated by restoration of respiration. This work examines the efficiency of different bI4 maturase constructions to restore respiration in different yeast maturase-deficient strains. It is shown that the N-terminal end of the bI4 maturase plays a crucial role in the maturase activity. Moreover, the 12 N-terminal amino acids of the mitochondrial outer membrane protein constitute the most efficient mitochondrial targeting sequence in this system. Surprisingly enough, it was found that the cytoplasmically translated bI4 maturase containing the 254 C-terminal amino acid coded by the intron open reading frame can complement maturase mutations without any added mitochondrial-targeting sequence. 相似文献
2.
The yeast RNA gene products are essential for mRNA splicing in vitro 总被引:43,自引:0,他引:43
The yeast rna mutations (rna2-rna11) are a set of temperature-sensitive mutations that result in the accumulation of intron-containing mRNA precursors at the restrictive temperature. We have used the yeast in vitro splicing system to investigate the role of products of the RNA genes in mRNA splicing. We have tested the heat lability of the in vitro mRNA splicing reaction in extracts isolated from mutant and wild-type cells. Extracts isolated from seven of the nine rna mutants demonstrated heat lability in this assay, while most wild-type extracts were stable under the conditions utilized. We have also demonstrated that heat inactivation usually results in the specific loss of an exchangeable component by showing that most combinations of heat-inactivated extracts from different mutants complement one another. In three cases (rna2, rna5, and rna11), the linkage of the in vitro defect to the rna mutations was ascertained by a combination of reversion, tetrad, and in vitro complementation analyses. Furthermore, each heat-inactivated extract was capable of complementation by at least one fraction of the wild-type splicing system. Thus many of the RNA genes are likely to code for products directly involved in and essential for mRNA splicing. 相似文献
3.
Connections between RNA splicing and DNA intron mobility in yeast mitochondria: RNA maturase and DNA endonuclease switching experiments. 下载免费PDF全文
The intron-encoded proteins bI4 RNA maturase and aI4 DNA endonuclease can be faithfully expressed in yeast cytoplasm from engineered forms of their mitochondrial coding sequences. In this work we studied the relationships between these two activities associated with two homologous intron-encoded proteins: the bI4 RNA maturase encoded in the fourth intron of the cytochrome b gene and the aI4 DNA endonuclease (I-SceII) encoded in the fourth intron of the gene coding for the subunit I of cytochrome oxidase. Taking advantage of both the high recombinogenic properties of yeast and the similarities between the two genes, we constructed in vivo a family of hybrid genes carrying parts of both RNA maturase and DNA endonuclease coding sequences. The presence of a sequence coding for a mitochondrial targeting peptide upstream from these hybrid genes allowed us to study the properties of their translation products within the mitochondria in vivo. We thus could analyze the ability of the recombinant proteins to complement RNA maturase deficiencies in different strains. Many combinations of the two parental intronic sequences were found in the recombinants. Their structural and functional analysis revealed the following features. (i) The N-terminal half of the bI4 RNA maturase could be replaced in total by its equivalent from the aI4 DNA endonuclease without affecting the RNA maturase activity. In contrast, replacing the C-terminal half of the bI4 RNA maturase with its equivalent from the aI4 DNA endonuclease led to a very weak RNA maturase activity, indicating that this region is more differentiated and linked to the maturase activity. (ii) None of the hybrid proteins carrying an RNA maturase activity kept the DNA endonuclease activity, suggesting that the latter requires the integrity of the aI4 protein. These observations are interesting because the aI4 DNA endonuclease is known to promote the propagation, at the DNA level, of the aI4 intron, whereas the bI4 RNA maturase, which is required for the splicing of its coding intron, also controls the splicing process of the aI4 intron. We propose a scenario for the evolution of these intronic proteins that relies on a switch from DNA endonuclease to RNA maturase activity. 相似文献
4.
Antibodies against a fused ''lacZ-yeast mitochondrial intron'' gene product allow identification of the mRNA maturase encoded by the fourth intron of the yeast cob-box gene. 总被引:3,自引:6,他引:3 下载免费PDF全文
Several missense or nonsense mutations have been localized in the fourth intron open reading frame (ORF) of the yeast mitochondrial cytochrome b gene. These results and the phenotypes of mutants strongly suggested that a mRNA maturase, controlling the expression of both cytochrome b and cytochrome oxidase subunit I (COXI) genes, is encoded in this ORF. To investigate more directly the biosynthesis of mRNA maturase we raised antibodies against a part of the putative ORF translation product. For that purpose we inserted a fragment of the ORF sequence, in phase, into the C-terminal EcoRI site of lacZ gene. The hybrid gene was then expressed in Escherichia coli under the control of either the wild-type lac promoter or the thermoregulated lambda system PR/cI857. The hybrid protein was partially purified and antibodies were raised against it. These antibodies recognized a mitochondrially coded protein, p27, in intron mutants, whereas no such protein was detected in the wild-type cell. These results demonstrate that the p27 protein, previously shown to be associated with the mRNA maturase activity, is actually translated from the intron ORF. The autoregulated mRNA maturase synthesis model is discussed in relation to these results. 相似文献
5.
Valérie Goguel Adriana Bailone Raymond Devoret Claude Jacq 《Molecular & general genetics : MGG》1989,216(1):70-74
Summary When the bI4 RNA maturase, encoded by the fourth intron of the mitochondrial cytochrome b gene of Saccharomyces cerevisiae, was expressed in Escherichia coli, formation of intra-chromosomal Lac+ recombinants was stimulated threefold. This hyper-rec phenotype was recA as well as recBCD dependent. The most active form of the bI4 maturase stimulated homologous recombination whereas splicing deficient mutants of bI4 maturase were either deficient in or unable to stimulate homologous recombination. 相似文献
6.
Li FY Nikali K Gregan J Leibiger I Leibiger B Schweyen R Larsson C Suomalainen A 《FEBS letters》2001,494(1-2):79-84
We report here a novel human gene, hMRS3/4, encoding a putative mitochondrial transporter structurally and functionally homologous to the yeast mitochondrial RNA splicing proteins 3 and 4. These proteins belong to the family of mitochondrial carrier proteins (MCF) and are likely to function as solute carriers. hMRS3/4 spans approximately 10 kb of genomic DNA on chromosome 10q24 and consists of four exons that encode a 364-aa protein with six transmembrane domains. A putative splice variant, encoding a 177-aa protein with three transmembrane domains, was also identified. hMRS3/4 has a well-conserved signature sequence of MCF and is targeted into the mitochondria. When expressed in yeast, hMRS3/4 efficiently restores the mitochondrial functions in mrs3(o)mrs4(o) knock-out mutants. Ubiquitous expression in human tissues and a well-conserved structure and function suggest an important role for hMRS3/4 in human cells. 相似文献
7.
Hongying Qu Fei Ma Qingwei Li 《遗传学报》2008,35(8):485-490
Mitochondfial DNA sequences transferred to the nucleus give rise to the so-called nuclear mitochondrial DNA (numt). In the GenBank database, 244 numts have been found in six orders of birds (Anseriformes, Columbiformes, Falconiformes, Charadriiformes, Galliformes and Passeriformes). Sequences alignment (NCBI-BLASTN) was carried out with mitochondrial and corresponding nuclear genome sequences in nine vertebrate species. The sequences with high homology were considered as numts. The number of numts ranged from 15 in chicken to 159 in chimpanzee. The sequences of numts in macaque, chimpanzee, and human spanned 100% of the entire mammalian mitochondrial genome. The reconstructed frequency of the mitochondrial gene transferred to the nucleus demonstrated that the rRNA genes had high frequencies than other mitochondrial genes. Using the RepeatMasker program, the transposable elements were detected in the flanking regions of each numt. The results showed that less than 5% of the flanking sequences were made up of repetitive elements in chicken. The GC content of 5′- and 3′-flanking regions of numts in nine species was less than 44%. The analysis of the flanking sequences provided a valuable understanding for future study on mechanism of mitochondrial gene transfer to the nucleus and the site of numt integration. 相似文献
8.
The yeast nuclear gene MRF1 encodes a mitochondrial peptide chain release factor and cures several mitochondrial RNA splicing defects. 总被引:1,自引:0,他引:1 下载免费PDF全文
We report the molecular cloning, sequencing and genetic characterization of the first gene encoding an organellar polypeptide chain release factor, the MRF1 gene of the yeast Saccharomyces cerevisiae. The MRF1 gene was cloned by genetic complementation of a respiratory deficient mutant disturbed in the expression of the mitochondrial genes encoding cytochrome c oxidase subunit 1 and 2, COX1 and COX2. For COX1 this defect has been attributed to an impaired processing of several introns. Sequence analysis of the MRF1 gene revealed that it encodes a protein highly similar to prokaryotic peptide chain release factors, especially RF-1. Disruption of the gene results in a high instability of the mitochondrial genome, a hallmark for a strict lesion in mitochondrial protein synthesis. The respiratory negative phenotype of mrf1 mutants lacking all known mitochondrial introns and the reduced synthesis of mitochondrial translation products encoded by unsplit genes confirm a primary defect in mitochondrial protein synthesis. Over-expression of the MRF1 gene in a mitochondrial nonsense suppressor strain reduces suppression in a dosage-dependent manner, shedding new light on the role of the '530 region' of 16S-like ribosomal RNA in translational fidelity. 相似文献
9.
P. Figueroa I. Gómez R. Carmona L. Holuigue A. Araya X. Jordana 《Molecular genetics and genomics : MGG》1999,262(1):139-144
The transfer of genetic information from the mitochondrion to the nucleus is thought to be still underway in higher plants. The mitochondrial genome of Arabidopsis thaliana contains only one rps14 pseudogene. In this paper we show that the functional gene encoding mitochondrial ribosomal protein S14 has been translocated to the nucleus. This gene transfer is a recent evolutionary event, which occurred within Cruciferae, probably after the divergence of Arabidopsis and Brassica napus. A 5′ extension of the rps14 reading frame encodes a presequence which, in?vitro, targets the polypeptide to isolated mitochondria and is cleaved off during or after import. No intron was found at the junction of the targeting presequence with the mitochondrially derived sequence, which are directly connected. By contrast, a 90-bp intron, which is removed by splicing to give a mature poly(A)+mRNA of 0.9 kb, is located in the 3′ non-coding region. To our knowledge, this is the first report of an intron in such a position in a functional transferred gene in higher plants, and suggests that exon shuffling may have been involved in the acquisition of elements necessary for expression in the nucleus. Putative roles of this intron in polyadenylation and enhancement of gene expression are discussed. 相似文献
10.
Molecular basis of the 'box effect', A maturase deficiency leading to the absence of splicing of two introns located in two split genes of yeast mitochondrial DNA 总被引:11,自引:0,他引:11
In the mitochondrial DNA of Saccharomyces cerevisiae, the genes cob-box and oxi3, coding for apocytochrome b and cytochrome oxidase subunit I respectively, are split. Several mutations located in the introns of the cob-box gene prevent the synthesis of cytochrome b and cytochrome oxidase subunit I (this is known as the 'box effect').-We have elucidated the molecular basis of this phenomenon: these mutants are unable to excise the fourth intron of oxi3 from the cytochrome oxidase subunit I pre-mRNA; the absence of a functional bI4 mRNA maturase, a trans-acting factor encoded by the fourth intron of the cob-box gene explains this phenomenon. This maturase was already known to control the excision of the bI4 intron; consequently we have demonstrated that it is necessary for the processing of two introns located in two different genes. Mutations altering this maturase can be corrected, but only partially, by extragenic suppressors located in the mitochondrial (mim2) or in the nuclear (NAM2) genome. The gene product of these two suppressors should, therefore, control (directly or indirectly) the excision of the two introns as the bI4 mRNA maturase normally does. 相似文献
11.
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target. 相似文献
12.
RNA splicing in Neurospora mitochondria. Defective splicing of mitochondrial mRNA precursors in the nuclear mutant cyt18-1 总被引:12,自引:0,他引:12
cyt18-1 (299-9) is a nuclear mutant of Neurospora crassa that has been shown to have a temperature-sensitive defect in splicing the mitochondrial large rRNA intron. In the present work, we investigate the effect of the cyt18-1 mutation on splicing of mitochondrial mRNA introns. Two genes were studied in detail; the cytochrome b (cob) gene, which contains two introns, and a "long form" of the cytochrome oxidase subunit I (coI) gene, which contains four introns. We found that splicing of both cob introns and splicing of at least two of the coI introns are strongly inhibited in the mutant, whereas splicing of coI intron 1, which is excised as a 2.6 X 10(3) base circle, is relatively unaffected. The rRNA intron and both cob introns are group I introns, whereas the circular coI intron may belong to another structural class. Control experiments showed that the degree of inhibition of splicing is greater in the mutant than can be accounted for by severe inhibition of mitochondrial protein synthesis. Finally, experiments in which mutant cells were shifted from 25 degrees C to 37 degrees C showed that splicing of the large rRNA precursor and splicing of the coI mRNA precursor are inhibited with similar kinetics. Considered together, our results suggest that the cyt18 gene encodes a trans-acting component that is required for the splicing of group I mitochondrial DNA introns or some subclass thereof. Since Neurospora cob intron 1 has been shown to be self-splicing in vitro, defective splicing of this intron in cyt18-1 indicates that an essentially RNA-catalyzed splicing reaction must be facilitated by a trans-acting factor, presumably a protein, in vivo. 相似文献
13.
P. Figueroa I. Gómez R. Carmona L. Holuigue A. Araya X. Jordana 《Molecular & general genetics : MGG》1999,262(1):139-144
The transfer of genetic information from the mitochondrion to the nucleus is thought to be still underway in higher plants.
The mitochondrial genome of Arabidopsis thaliana contains only one rps14 pseudogene. In this paper we show that the functional gene encoding mitochondrial ribosomal protein S14 has been translocated
to the nucleus. This gene transfer is a recent evolutionary event, which occurred within Cruciferae, probably after the divergence
of Arabidopsis and Brassica napus. A 5′ extension of the rps14 reading frame encodes a presequence which, in vitro, targets the polypeptide to isolated mitochondria and is cleaved off
during or after import. No intron was found at the junction of the targeting presequence with the mitochondrially derived
sequence, which are directly connected. By contrast, a 90-bp intron, which is removed by splicing to give a mature poly(A)+mRNA of 0.9 kb, is located in the 3′ non-coding region. To our knowledge, this is the first report of an intron in such a
position in a functional transferred gene in higher plants, and suggests that exon shuffling may have been involved in the
acquisition of elements necessary for expression in the nucleus. Putative roles of this intron in polyadenylation and enhancement
of gene expression are discussed.
Received: 11 January 1999 / Accepted: 27 April 1999 相似文献
14.
Chemical synthesis of a mitochondrial gene designed for expression in the yeast nucleus 总被引:1,自引:0,他引:1
A novel DNA sequence coding for subunit 8 of the mitochondrial ATPase of Saccharomyces cerevisiae has been constructed by chemical synthesis. The synthetic gene, termed NAP1, is designed for expression in the yeast nucleus and codes for a 48 amino acid polypeptide identical to that encoded by the mitochondrial aap1 gene of S. cerevisiae. The codons chosen for the NAP1 sequence correspond almost exclusively to those most frequently occurring in highly expressed yeast genes. The NAP1 coding region differs in 31 codons from that of aap1, and is flanked by sequences carrying restriction enzyme sites useful for cloning and for gene expression. A 170 bp double stranded DNA molecule was constructed by assembling 12 oligonucleotides (12 to 45 bases in length) in a single annealing/ligation mixture. This synthetic gene will provide a route for the systematic manipulation, through in vitro mutagenesis, of the structure of a protein normally encoded by mitochondrial DNA. 相似文献
15.
16.
17.
18.
Alternative mRNA splicing: the Shaker gene 总被引:2,自引:0,他引:2
19.
Use of a synthetic DNA oligonucleotide to probe the precision of RNA splicing in a yeast mitochondrial petite mutant. 总被引:1,自引:1,他引:1 下载免费PDF全文
H F Tabak J van der Laan K A Osinga J P Schouten J H van Boom G H Veeneman 《Nucleic acids research》1981,9(18):4475-4483
In some strains of Saccharomyces cerevisiae the mitochondrial gene coding for 21S rRNA is interrupted by an intron of 1143 bp. This intron contains a reading frame for 235 amino acids: Unassigned Reading Frame (URF). In order to check whether expression of this URF is required for proper splicing of precursors to 21S rRNA, the precision of RNA splicing was analysed in a petite mutant, where no mitochondrial protein synthesis is possible anymore. We have devised a new assay to monitor the precision of the splicing event. The method is of general application, provided that the sequence of the splice boundaries is known. In the case of the 21S rRNA it involves the synthesis of the DNA oligonucleotide d(CGATCCCTATTGTC( complementary to the 5' d(CGATCCCTAT) and 3' d(TGTC) borders flanking the intron in the 21S rRNA gene. The oligonucleotide is labelled with 32p at the 5'-end, hybridised to RNA and subsequently subjected to digestion with S1 nuclease. Resistance to digestion will only be observed if the correct splice-junction is made. The petite mutant we have studied contains a 21S rRNA with the same migration behaviour as wildtype 21S rRNA. In RNA blotting experiments, using an intron specific hybridisation probe, the same intermediates in splicing are found both in wild type and petite mutant. Finally the synthetic oligonucleotide hybridises to petite 21S rRNA and its thermal dissociation behaviour is indistinguishable from a hybrid formed with wildtype 21S rRNA. We conclude that expression of the URF, present in the intron of the 21S rRNA gene, is not required for processing and correct splicing of 21S ribosomal precursor RNA. 相似文献