首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of soil nutrient availability and tissue chemistry on decomposition of both fine roots (<2 mm diameter) and leaves in three sites along a forest chronosequence in the Hawaiian Islands. These sites form a natural fertility gradient, with the youngest and oldest sites having lower nutrient availability than the intermediate-aged site. Nitrogen (N) limits aboveground net primary productivity (ANPP) in the youngest site, while phosphorus (P) limits ANPP in the oldest site. Both root and leaf litter decomposed most slowly in the 4.1-Myear-old site. We also investigated root decomposition in fertilized plots at the youngest and oldest sites; when roots were produced and decomposed in fertilized plots, root decomposition rates increased with N and P additions at the 4.1-Myear-old site. At the 300-year-old site, however, root decomposition rates did not respond to N or P additions. Roots decomposed faster than leaves at the more infertile sites, in part because of lower lignin-to-nitrogen ratios in roots than in leaf litter. Decomposing roots immobilized more nutrients than did decomposing leaves, and may serve an important role in retaining nutrients in these forests. Received: 30 November 1998 / Accepted: 12 August 1999  相似文献   

2.
How plants respond to long-term nutrient enrichment can provide insights into physiological and evolutionary constraints in various ecosystems. The present study examined foliar concentrations after fertilization—to determine if nutrient accumulation responses of the most abundant species in a plant community reflect differences in N and P uptake and storage. Using a chronosequence in the Hawaiian Islands that differs in N and P availability, it was shown that after fertilization, plants increase foliar P to a much greater degree than foliar N, as indicated by response ratios. In addition, foliar P responses after fertilization were more variable and largely driving the observed changes in N:P values. Across species, both inorganic and organic P increased but neither form of N increased significantly. This pattern of P accumulation was consistent across 13 species of varying life forms and occurred at both the N-limited and P-limited site, although its magnitude was larger at the P-limited site. Foliar P accumulation after nutrient enrichment may indicate nutrient storage and may have evolved to be a general strategy to deal with uncertainties in P availability. Storage of P complicates interpretations of N:P values and the determination of nutrient limitation.  相似文献   

3.
We compared phosphorus (P) dynamics and plant productivity in two montane tropical rain forests (Mount Kinabalu, Borneo) that derived from similar parent materials (largely sedimentary rocks) and had similar climates but differed in terms of soil age. The younger site originated from Quaternary colluvial deposits, whereas the older site had Tertiary-age material. The older site had a distinctive spodic horizon, reduced levels of labile inorganic soil P, higher concentrations of recalcitrant organic soil P, and lower rates of net soil N mineralization. P fertilization led to soil nitrogen (N) immobilization in the P-deficient soil, indicating that soil N mineralization was limited by P at the P-deficient older site. Mean foliar nutrient concentration (on both a weight and an area basis) was similar at the two sites for all elements except P, which was lower at the older site. Aboveground net primary production (ANPP) was lower at the older site than at the younger one; this difference could be explained by the reduced availability of P and N (as down-regulated by P) at the older site. The relatively ample allocation of P and N to leaves, despite the reduced availability at the P-deficient old site, was attributable to its high resorption efficiency. High resorption resulted in lower concentrations of elements in leaf litter—that is, less decomposable low-quality litter. On the other hand, the concentration of leaf litter lignin was considerably lower at the older site; this appeared to be a de facto adaptive mechanism to avoid retarding litter decomposition.  相似文献   

4.
Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.  相似文献   

5.
Nitrogen and phosphorus are the main elements limiting net primary production in terrestrial ecosystems. When growing in nutrient‐poor soils, plants develop physiological mechanisms to conserve nutrients, such as reabsorbing elements from senescing foliage (i.e. nutrient retranslocation). We investigated the changes in soil N and P in post‐fire succession in temperate rainforests of southern Chile. In this area, forest recovery often leads to spatially scattered, discrete regeneration with patches varying in age, area, species richness and tree cover, representing different degrees of recovery from disturbance. We hypothesized that soil nutrient concentrations should differ among tree regenerating patches depending on the progress of forest regeneration and that nutrient resorption should increase over time as colonizing trees respond to limited soil nutrients. To evaluate these hypotheses, we sampled 40 regeneration patches in an area of 5 ha, spanning a broad range of vegetation complexity, and collected soil, tree foliage and litter samples to determine N and P concentrations. Nutrient concentrations in leaf litter were interpreted as nutrient resorption proficiency. We found that soil P was negatively correlated with all the indicators of successional progress, whereas total soil N was independent of the successional progress. Foliar N and P were unrelated to soil nutrient concentrations; however, litter N was negatively related to soil N, and litter P was positively related with soil P. Finally, foliar N:P ratios ranged from 16 to 25, which suggests that P limitation can hamper post‐fire regeneration. We provide evidence that after human‐induced fires, succession in temperate forests of Chile can become nutrient limited and that high nutrient retranslocation is a key nutrient conservation strategy for regenerating tree communities.  相似文献   

6.
We report results from a large-scale nutrient fertilization experiment along a “megadiverse” (154 unique species were included in the study) 3,000-m elevation transect in the Peruvian Andes and adjacent lowland Amazonia. Our objectives were to test if nitrogen (N) and phosphorus (P) limitation shift along this elevation gradient, and to determine how an alleviation of nutrient limitation would manifest in ecosystem changes. Tree height decreased with increasing elevation, but leaf area index (LAI) and diameter at breast height (DBH) did not vary with elevation. Leaf N:P decreased with increasing elevation (from 24 at 200 m to 11 at 3,000 m), suggesting increased N limitation and decreased P limitation with increasing elevation. After 4 years of fertilization (N, P, N + P), plots at the lowland site (200 m) fertilized with N + P showed greater relative growth rates in DBH than did the control plots; no significant differences were evident at the 1,000 m site, and plots fertilized with N at the highest elevation sites (1,500, 3,000 m) showed greater relative growth rates in DBH than did the control plots, again suggesting increased N constraint with elevation. Across elevations in general N fertilization led to an increase in microbial respiration, while P and N + P addition led to an increase in root respiration and corresponding decrease in hyphal respiration. There was no significant canopy response (LAI, leaf nutrients) to fertilization, suggesting that photosynthetic capacity was not N or P limited in these ecosystems. In sum, our study significantly advances ecological understanding of nutrient cycling and ecosystem response in a region where our collective knowledge and data are sparse: we demonstrate N limitation in high elevation tropical montane forests, N and P co-limitation in lowland Amazonia, and a nutrient limitation response manifested not in canopy changes, but rather in stem and belowground changes.  相似文献   

7.
Previous work in a young Hawaiian forest has shown that nitrogen (N) limits aboveground net primary production (ANPP) more strongly than it does decomposition, despite low soil N availability. In this study, I determined whether (a) poor litter C quality (that is, high litter lignin) poses an overriding constraint on decomposition, preventing decomposers from responding to added N, or (b) high N levels inhibit lignin degradation, lessening the effects of added N on decomposition overall. I obtained leaf litter from one species, Metrosideros polymorpha, which dominates a range of sites in the Hawaiian Islands and whose litter lignin concentration declines with decreasing precipitation. Litter from three dry sites had lignin concentrations of 12% or less, whereas litter from two wet sites, including the study site, had lignin concentrations of more than 18%. This litter was deployed 2.5 years in a common site in control plots (receiving no added nutrients) and in N-fertilized plots. Nitrogen fertilization stimulated decomposition of the low-lignin litter types more than that of the high-lignin litter types. However, in contrast to results from temperate forests, N did not inhibit lignin decomposition. Rather, lignin decay increased with added N, suggesting that the small effect of N on decomposition at this site results from limitation of decomposition by poor C quality rather than from N inhibition of lignin decay. Even though ANPP is limited by N, decomposers are strongly limited by C quality. My results suggest that anthropogenic N deposition may increase leaf litter decomposition more in ecosystems characterized by low-lignin litter than in those characterized by high-lignin litter. Received 26 October 1999; accepted 2 June 2000.  相似文献   

8.
Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (相似文献   

9.
The aim of this study was to examine how shifts in soil nutrient availability along a soil chronosequence affected temperate rainforest vegetation. Soil nutrient availability, woody plant diversity, composition and structure, and woody species leaf and litter nutrient concentrations were quantified along the sequence through ecosystem progression and retrogression. In this super-wet, high leaching environment, the chronosequence exhibited rapid soil development and decline within 120,000 years. There were strong gradients of soil pH, N, P and C, and these had a profound effect on vegetation. N:Pleaf increased along the chronosequence as vegetation shifted from being N- to P- limited. However, high N:Pleaf ratios, which indicate P-limitation, were obtained on soils with both high and low soil P availability. This was because the high N-inputs from an N-fixing shrub caused vegetation to be P-limited in spite of high soil P availability. Woody species nutrient resorption increased with site age, as availability of N and P declined. Soil P declined 8-fold along the sequence and P resorption proficiency decreased from 0.07 to 0.01%, correspondingly. N resorption proficiency decreased from 1.54 to 0.26%, corresponding to shifts in mineralisable N. Woody plant species richness, vegetation cover and tree height increased through ecosystem progression and then declined. During retrogression, the forest became shorter, more open and less diverse, and there were compositional shifts towards stress-tolerant species. Conifers (of the Podocarpaceae) were the only group to increase in richness along the sequence. Conifers maintained a lower N:Pleaf than other groups, suggesting superior acquisition of P on poor soils. In conclusion, there was evidence that P limitation and retrogressive forests developed on old soils, but N limitation on very young soils was not apparent because of inputs from an abundant N-fixing shrub.Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献   

10.
Understanding nutrient limitation of net primary productivity (NPP) is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P]) and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation —as defined mechanistically by NPP responses to fertilization— based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root) [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba) had 9 % higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza) had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community.  相似文献   

11.
In nutrient-poor ecosystems high polyphenol concentrations in plant litter have been proposed to influence soil nutrient availability in benefit of the plants. We addressed the question whether litter polyphenol concentrations vary across a soil chronosequence of almost identical geology, climate and plant species composition, but of a wide range in nitrogen (N) and phosphorus (P) availability in the Hawaiian Islands. Concentrations of total phenolics (TPh) and proanthocyanidins (PA) in leaf litter of the dominant tree species Metrosideros polymorpha were higher at the oldest, P-limited site compared to the youngest, N-limited site, with intermediate values at the two relatively fertile sites co-limited by N and P. Polyphenol concentrations in fine root litter differed considerably from those observed in leaf litter and varied differently across the soil age gradient. Long-term fertilization did not significantly alter polyphenol concentrations in Metrosideros litter at either site. Moreover, green leaves and leaf litter of Metrosideros showed similar relative differences among sites when compared between natural populations and plants from the same populations but grown in a common garden. These results suggest that polyphenol concentrations inherently vary among populations of the dominant tree species in Hawaiian montane forests possibly indicating an adaptation to ecosystem properties such as substrate age related differences in soil fertility. The combined above- and below-ground input rate of TPh ranged from 62.4 to 170.8 g/m2/yr and was significantly higher at the P-limited than at the N-limited site. Root-derived polyphenols contributed a much higher absolute and relative amount of phenolic input at the N-limited than at the P-limited site. The differences in amount, quality, and pathways of input might suggest specific interactions with soil processes and nutrient cycling among the Hawaiian rainforests studied here.  相似文献   

12.
过度放牧是中国典型草原生态系统日趋退化的主要原因.由于养分输入-输出的不均衡,将导致土壤养分库的耗竭,而确定退化草原受何种养分的制约是对其进行恢复的重要途径之一.应用N:P化学计量学的原理和方法,有望代替传统的野外养分添加实验,来研究不同草地受养分限制的状况.本文采用这两种方法在物种水平上研究限制性养分.此外,陆地植物器官中的N:P比相对恒定是植物在地球上生存的重要适应机制,养分添加为验证这一假说提供了一种有效手段.为此,我们采用野外N素添加的方法,研究了内蒙古典型草原两种演替系列样地中(围封22年的样地A和围封2年的样地B)羊草(Leymus chinensis(Ttin.)Tzvel.)和黄囊苔草(Carex korshinskyi Kom)生物量和N:P化学计量学特征的变异.N素添加梯度分别为0、5、15、30、50、80 gNH4NO3·m-2·a-1.研究结果表明,在施肥第一年,两个物种的地上生物量和P含量均不受N素添加的影响;相关分析结果表明,在施肥第二年两种植物的N:P比不受氮素添加的影响;施肥可以显著提高羊草和黄囊苔草地上器官的含N量,P含量只是在第二年有显著增大的趋势;2001年,两块样地中羊草和黄囊苔草的氮磷含量在不同施肥处理下均呈极显著地正相关.这表明,样地A中黄囊苔草缺乏P,样地B中羊草缺乏N,施肥两年后,两个物种器官中的N、P含量具有显著的协同关系,从物种水平上验证了我们提出的假说.同时,两年的实验结果还表明,生态系统中不同物种对添加N素的响应不同,笼统地界定一个生态系统受某种元素的制约是不恰当的.  相似文献   

13.
We tested the hypothesis that P was the nutrient limiting net primary production of a nativeMetrosideros polymorpha forest on a highly weathered montane tropical soil in Hawaii. A factorial experiment used all combinations of three fertilizer treatments: nitrogen (N), phosphorus (P) and a mix of other essential nutrients (OE), consisting primarily of mineral derived cations and excluding N and P. P addition, but not N or OE, increased leaf area index within 12 months, foliar P concentration measured at 18 months, and stem diameter increment within 18 months. Stem growth at 18 months was even greater when trees fertilized with P also received the OE treatment. N and P additions increased leaf litterfall and N and P in combination further increased litterfall. The sequence of responses suggests that increased available P promoted an increase in photosynthetic area which led to increased wood production. P was the essential element most limiting to primary production on old volcanic soil in contrast to the N limitation found on young volcanic soils.  相似文献   

14.
? Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. ? Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N?:?P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N?:?P resorption ratios and soil nutrient availability. ? N?:?P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes 相似文献   

15.
Patterns and controls of annual aboveground net primary productivity (ANPP) are fundamental metrics of ecosystem functioning. It is generally assumed, but rarely tested, that determinants of ANPP in one region within a biome will operate similarly throughout that biome, as long as physiognomy and climate are broadly consistent. We tested this assumption by quantifying ANPP responses to fire, grazing history, and nitrogen (N) addition in North American (NA) and South African (SA) savanna grasslands. We found that total ANPP responded in generally consistent ways to fire, grazing history, and N addition on both continents. Annual fire in both NA and SA consistently stimulated total ANPP (28–100%) relative to unburned treatments at sites with deep soils, and had no effect on ANPP in sites with shallow soils. Fire did not affect total ANPP in sites with a recent history of grazing, regardless of whether a single or a diverse suite of large herbivores was present. N addition interacted strongly and consistently with fire regime in both NA and SA. In annually burned sites that were not grazed, total ANPP was stimulated by N addition (29–39%), but there was no effect of N fertilization in the absence of fire. In contrast, responses in forb ANPP to fire and grazing were somewhat divergent across this biome. Annual fire in NA reduced forb ANPP, whereas grazing increased forb ANPP, but neither response was evident in SA. Thus, despite a consistent response in total ANPP, divergent responses in forb ANPP suggest that other aspects of community structure and ecosystem functioning differ in important ways between these mesic savanna grasslands.  相似文献   

16.
17.
We measured nitrogenase activity (acetylene reduction) of asymbiotic, heterotrophic, nitrogen-fixing bacteria on leaf litter from the tree Metrosideros polymorpha collected from six sites on the Hawaiian archipelago. At all sites M. polymorpha was the dominant tree, and its litter was the most abundant on the forest floor. The sites spanned a soil chronosequence of 300 to 4.1 million y. We estimated potential nitrogen fixation associated with this leaf litter to be highest at the youngest site (1.25 kg ha-1 y-1), declining to between 0.05 and 0.22 kg ha-1 y-1 at the oldest four sites on the chronosequence. To investigate how the availability of weathered elements influences N fixation rates at different stages of soil development, we sampled M. polymorpha leaf litter from complete, factorial fertilization experiments located at the 300-y, 20,000-y and 4.1 million–y sites. At the youngest and oldest sites, nitrogenase activity on leaf litter increased significantly in the plots fertilized with phosphorus and “total” (all nutrients except N and P); no significant increases in nitrogenase activity were measured in leaf litter from treatments at the middle-aged site. The results suggest that the highest rates of N fixation are sustained during the “building” or early phase of ecosystem development when N is accumulating and inputs of geologically cycled (lithophilic) nutrients from weathering are substantial. Received 4 February 1999; accepted 29 March 2000.  相似文献   

18.
Nutrient content and seasonality of the leaf component in cork-oak litterfal were studied over a two year period in two cork-oak forest sites differing in biomass and edaphic condition in the north-eastern Iberian peninsula. Fallen senescent leaves compared to young leaves showed higher non-mobile nutrient concentrations and lower mobile nutrient concentrations, specially P, N, K, and Mg. At both sites, seasonal fluctuations affected both leaf production and leaf mineral content. The maximum leaf fall period correspond to the start of the vegetative growth and to the lowest N and P concentration in the falling leaves. The opposite was true for the winter, when litterfal was minimal and N and P content in falling leaves was at a maximum.The comparison between falling leaves and canopy leaves suggests that the analysis of fallen leaves can be a useful measure of N and P nutrition in cork-oak. We found site dependent differences in nutrient content and nutrient remobilization. In comparison with Q. ilex, although litter production was in the same range, nutrient retranslocation was greater for Q. suber.  相似文献   

19.
Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in ‘young’ sites to phosphorus (P) limitation in ‘old’ sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status.  相似文献   

20.
The native tree Metrosideros polymorpha dominates Hawaiian forests across a very wide range of soil fertility, including both sites where forest production is limited by nitrogen (N) and others where it is limited by phosphorus (P). Five long-term fertilization experiments have further broadened the range of nutrient availabilities experienced by Metrosideros. Adding P to P-limited sites increased foliar P concentrations threefold and litter P concentrations up to 10-fold; lignin concentrations decreased, and the decomposability of leaf litter increased from 32%–35% to 36%–46% mass loss in the first year. Adding N to N-limited sites increased leaf and litter N concentrations by only 15%–20%, with little or no effect on the decomposability of tissue. Received 22 January 1998; accepted 4 May 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号