首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了明确我国海域拟菱形藻属(Pseudo-nitzschia)物种的产毒特征, 从中国沿海建立了15个拟菱形藻单克隆培养株系, 利用高效液相色谱-质谱联用法对其多莫酸特征进行检测, 在10个株系中检测到多莫酸。结合光学显微镜下的群体特征和透射电镜下的超微形态学特征, 以及基于核糖体转录间隔区的分子系统学数据, 确认上述10个产毒株系分别隶属于3个物种:尖细拟菱形藻P. cuspidata、伪柔弱拟菱形藻P. pseudodelicatissima、伪善拟菱形藻P. fraudulenta, 其中伪善拟菱形藻是我国的新记录种。建立尖细拟菱形藻的11个尖细拟菱形藻株系, 其中3个株系未检出多莫酸, 其余8个株系有检出, 单细胞产毒水平为0.4—5.5 fg。建立伪柔弱拟菱形藻株系2个, 1个未检出多莫酸, 另1个株系的单细胞产毒量为1 fg。建立伪善拟菱形藻株系2个, 纯种培养株系均未检出多莫酸。利用卤虫(Artemia salina)对部分藻株进行混培诱导, 其中尖细拟菱形藻(MC4049)和伪柔弱拟菱形藻(MC3015)的产毒水平略有下降, 单细胞产毒水平分别由2、1 fg降至0.2、0.4 fg, 而伪善拟菱形藻(MC4074)的产毒能力则有显著改变, 单细胞产毒水平由未检出上升至17.5 fg。研究丰富了我国产毒拟菱形藻的物种多样性, 明确了其物种信息和产毒水平, 可为后续深入研究提供基础数据。  相似文献   

2.
3.
Large-subunit ribosomal RNA-targeted probes for Pseudo-nitzschia australis Frenguelli, P. multiseries (Hasle) Hasle, P. pseudodelicatissima (Hasle) Hasle, and P. pungens (Grunow) Hasle were applied to cultured and natural samples using whole-cell and sandwich hybridization. Testing of the latter method is emphasized here, and technique refinements that took place during 1996–1997 are documented. Application of the sandwich hybridization test showed that the signal intensity obtained for a given number of target cells remained constant as batch cultures of these organisms progressed from active through stationary growth phases. This suggests that cellular rRNA content for each target species remained relatively stable despite changes in growth state. Application of whole-cell and sandwich hybridization assays to natural samples showed that both methods could be used to detect wild P. australis, P. pseudodelicatissima, and to a lesser degree P. multiseries, but detection of P. pungens was prone to error. A receptor-binding assay for domoic acid (DA) enabled detection of this toxin activity associated with a particulate fraction of the plankton and provided a context in which to view results of the rRNA probe tests. In one case, the probe for P. australis cross-reacted with P. cf. delicatissima. The sample that contained the latter species also contained a low amount of DA activity. Under certain field conditions, results of whole-cell and sandwich hybridization tests disagreed. Detailed analysis of selected field samples illustrates how such situations arose. Collectively, the rRNA probe and toxin analyses suggest that manifestation of DA in the environment is possible in the absence of readily recognizable intact cells.  相似文献   

4.
Domoic acid (DA) was first detected in shellfish in New Zealand after the implementation of a comprehensive biotoxin monitoring programme for amnesic, paralytic, diarrhetic and neurotoxic shellfish toxins, following a suspected neurotoxic shellfish poisoning (NSP) event in early 1993. Both phytoplankton monitoring and shellfish flesh testing programmes have led to an extensive database which has helped link species of Pseudo-nitzschia to specific DA outbreaks. In 1994, P. pungens and P. turgidula were associated with DA contamination of shellfish, and cultured isolates of these species proved to be toxin producers. During 1996 the use of species-specific ribosomal RNA (rRNA)-targeted oligonucleotide probes and DA immunoassays led to the discovery of toxin production by P. fraudulenta, and showed the nontoxic P. heimii to be a major bloom former. Pseudo-nitzschia delicatissima, P. pseudodelicatissima and P. multiseries, also identified using rRNA-targeted probes, have been linked to DA contamination of New Zealand shellfish; P. australis is the main cause of DA in scallops. The relative amnesic shellfish poisoning (ASP) risk associated with different species, largely determined by DA immunoassays of cultured isolates, is now used by some regulators to refine risk assessments. Species identification is therefore vital so that shellfish growers, and health and industry officials, can make safe and economically sound harvesting decisions. The development and field trialling of DNA probes is proving invaluable in this context.  相似文献   

5.
6.
为了丰富我国海域拟菱形藻(Pseudo-nitzschia Peragallo)的物种多样性, 并澄清其产毒特征, 研究从广东大亚湾海域分离并建立了一株拟菱形藻的单克隆培养株系MC298, 通过光学显微镜下的群体特征和透射电镜下的超微形态特征观察, 结合基于核糖体转录间隔区(Internal Transcribed Spacer, ITS)的分子系统学数据, 以及基于ITS2转录RNA的二级结构分析, 鉴定到我国拟菱形藻属的1个新记录种: 并基拟菱形藻P. decipiens Lundholm & Moestrup。研究对其形态学特征进行了较为详细地描述, 并与相似种进行了比较, 还对其ITS2-RNA的特有标志结构进行了阐述。同时, 利用高效液相色谱-质谱联用法(Liquid chromatography tandem mass spectrometry, LC-MS/MS)对该藻株的产毒特征进行了检测, 结果未检测到DA的存在。研究不仅丰富了我国拟菱形藻属的物种多样性, 也可为拟菱形藻的产毒特征研究提供基础数据。  相似文献   

7.
Domoic acid (DA), a neuroexcitatory amino acid, was detected in batch culture of the newly recognized species Nitzschia navis-varingica Lundholm et Moestrup . The production of DA by this diatom was confirmed by electrospray ionization mass spectrometry. The diatom was collected from a shrimp-culture pond in Do Son, Vietnam. The production of DA (1.7 pg·cell 1) is within the levels reported for Pseudo-nitzschia multiseries (Hasle) Hasle. The DA production started during the late exponential growth phase and reached a maximum during the early stationary growth phase. Maximum DA levels in the axenic culture decreased to about half that of the nonaxenic culture (0.9 pg·cell 1 vs. 1.7 pg·cell 1), suggesting that DA production by the new species is influenced by bacteria.  相似文献   

8.
Salinity varies widely in coastal areas that often have a high abundance of Pseudo‐nitzschia H. Peragallo. Pseudo‐nitzschia is abundant in Louisiana waters, and high cellular domoic acid has been observed in natural samples but no human illness has been reported. To assess the threat of amnesic shellfish poisoning (ASP), we examined the effect of salinity on Pseudo‐nitzschia occurrence in the field and growth in the laboratory with special emphasis on the salinity range where oysters are harvested (10–20 psu). In Louisiana coastal waters, Pseudo‐nitzschia spp. occurred over a salinity range of 1 to >35 psu, but they occurred more frequently at higher rather than lower salinities. Seven species were identified, including toxigenic species occurring at low salinities. In culture studies, seven clones of three species grew over a salinity range of 15 to 40 psu, some grew at salinities down to 6.25 psu, and most grew at salinities up to 45 psu. Tolerance of low salinities decreased from Pseudo‐nitzschia delicatissima (Cleve) Heiden to P. multiseries (Hasle) Hasle to P. pseudodelicatissima (Hasle) Hasle emend. Lundholm, Hasle et Moestrup. In conclusion, although Pseudo‐nitzschia was more prevalent in the field and grew better in the laboratory at higher salinities, it grew and has been observed at low salinities. Therefore, the probability of ASP from consumption of oysters harvested from the low salinity estuaries of the northern Gulf of Mexico is low but not zero; animal mortality events from toxin vectors other than oysters at higher salinity on the shelf are more likely.  相似文献   

9.
Plankton samples from three inland embayments and several outer coastal sites of Washington State were collected from 1997 through 1999 and were examined for the presence of diatoms of the genus Pseudo‐nitzschia and levels of the toxin, domoic acid (DA). Seven species were observed, including Pseudo‐nitzschia pungens (Grunow ex Cleve) Hasle, P. multiseries (Hasle) Hasle, P. australis Frenguelli, P. fraudulenta (Cleve) Hasle, P. cf. heimii Manguim, P. pseudodelicatissima (Hasle) Hasle, and P. delicatissima (Cleve) Heiden. The coastal Pseudo‐nitzschia species assemblages differed significantly from those observed within embayments. The dominant species observed at coastal sites were P. pseudodelicatissima and P. cf. heimii. Pseudo‐nitzschia assemblages found in embayments included one or more of the following species: P. pungens, P. multiseries, P. australis, P. pseudodelicatissima, and P. fraudulenta. The nuclear large subunit rRNA gene was sequenced for six of the seven species identified. This sequence revealed that P. multiseries, P. pungens, P. australis, and P. heimii were genetically similar to those found in California, whereas P. delicatissima and P. pseudodelicatissima were distinct from the California isolates. Although the concentrations of DA in razor clams along Washington State coasts have exceeded regulatory limits several times since 1991, levels of DA in shellfish from Washington State embayments have not yet exceeded regulatory limits. The widespread presence of toxin‐producing Pseudo‐nitzschia species suggests, however, that toxic blooms are likely to occur within embayments in the future. In conjunction with the monitoring of environmental conditions conducive to toxic bloom formation, the development of species‐specific probes for rapid and accurate detection of potentially toxic Pseudo‐nitzschia species in this region would enable the forecasting of a toxic event before DA accumulates in shellfish, thereby reducing the impacts to coastal communities.  相似文献   

10.
A bloom of the pennate diatom Pseudo-nitzschia, several species of which are associated with the production of the potent excitotoxin domoic acid, was observed in a Puget Sound, Washington embayment in July and August of 1997. Penn Cove, which receives nutrients from the nearby Skagit River and abundant sunshine during summer months due to its location in the rain shadow of the Olympic Mountains, is the home of a commercial mussel farm which supplies shellfish to many coastal areas of the USA. Levels of domoic acid in mussels increased to 3 ppm on 6 and 10 July, corresponding to the observation of a brown algal bloom in Penn Cove. Four species of Pseudo-nitzschia (P. pungens, P. multiseries, P. australis, and P. pseudodelicatissima) were present in our samples from the cove, corresponding to levels of domoic acid in seawater ranging from 0.1-0.8 mirog l(-1) as measured by a receptor binding assay. The highest Pseudo-nitzschia concentration during the time of our sampling was 13 million cells per liter on 28 July. The bloom of Pseudo-nitzschia occurred after a period of strong discharge from the Skagit River and rain accompanied by elevated south and southeasterly winds. Stratification of the cove, providing optimal bloom conditions, was facilitated by weak winds, sunshine, and a freshwater lens at the mouth of the cove. The position of the Pseudo-nitzschia bloom was influenced by buoyancy fronts caused by exchange of water within the cove with that of Saratoga Passage. The decay of this bloom in Penn Cove was accompanied by decreasing nitrate levels at all measured depths. These and future observations aid in the development of a model for prediction of toxic bloom events in the shallow embayments of Puget Sound.  相似文献   

11.
Pseudo-nitzschia is a marine cosmopolitan genus of chain-forming planktonic diatoms. As for the vast majority of phytoplankton organisms, species identification within this genus mostly relies upon morphological features. Taxa were initially identified based on cell shape and gross morphology of their composite silica cell wall, called the frustule. Yet, observations of the frustule in electron microscopy showed many additional characters for species identification and results of molecular studies have demonstrated that genetically distinct groups might exist within morpho-species. However, these studies have not addressed the biological meaning of these genetic differences. Here, we bridge that gap by comparing ultrastructural features and sequence data (three ribosomal and one plastid marker) of 95 strains with results of mating experiments among these strains. Experiments were performed on two morphologically distinct entities: P. delicatissima and P. pseudodelicatissima. Each of the two entities consisted of multiple genetically distinct and reproductively isolated taxa, all occurring in sympatry: P. delicatissima was composed of three phylogenetic and reproductively distinct groups, whereas P. pseudodelicatissima consisted of up to five. Once these taxa had been defined both genetically and biologically, subtle ultrastructural differences could be detected as well. Our findings not only show that cryptic genetic variants abound in sympatry, but also that they are reproductively isolated and, therefore, biologically distinct units.  相似文献   

12.
《Harmful algae》2011,10(6):540-547
We conducted field and laboratory experiments to determine whether the Pseudo-nitzschia-derived metabolite, domoic acid (DA), functions as a microzooplankton grazing suppressant. Using the seawater dilution technique in natural plankton communities along the Pacific Northwest coast, we found no significant relationship between dissolved DA and microzooplankton grazing rate on Pseudo-nitzschia spp. Dilution experiments amended with either 50 or 80 nM dissolved DA also showed no evidence that microzooplankton community grazing was affected by DA. The relationship between Pseudo-nitzschia spp. intracellular DA and microzooplankton grazing was less clear. On a subset of data where small Pseudo-nitzschia spp. cells dominated community composition, an apparent negative relationship between intracellular DA and microzooplankton grazing was observed. However, we provide evidence that this relationship is a microzooplankton response to Pseudo-nitzschia spp. growth rate, rather than cellular DA. In laboratory experiments, two diatom-consuming dinoflagellates, Protoperidinium excentricum and P. pellucidum, were fed single and mixed diets of a toxic and non-toxic Pseudo-nitzschia species and an optimal prey, Ditylum brightwellii. P. excentricum did not grow or ingest either the toxic or non-toxic Pseudo-nitzschia. However, P. pellucidum grew as well on the toxic Pseudo-nitzschia multiseries as it did on D. brightwellii, but did not grow on the non-toxic Pseudo-nitzschia pungens. Both dinoflagellates were capable of growing if Pseudo-nitzschia spp. diets were mixed with D. brightwellii. Addition of dissolved DA also had no negative effect on dinoflagellate growth when fed the optimal diatom diet. We conclude that domoic acid has no functional role in deterring microzooplankton grazing or growth rates. Further, our findings highlight the difficulty of defining the complex mechanisms that regulate predator and prey interactions within microplankton food webs.  相似文献   

13.
The frequency and intensity of Pseudo-nitzschia spp. blooms along the coast of Catalonia have been increasing over the past 20 years. As species from this genus that are documented as toxigenic have been found in local waters, with both toxic and nontoxic species cooccurring in the same bloom, there is a need to develop management tools for discriminating the difference. Currently, differentiation of toxic and nontoxic species requires time-consuming electron microscopy to distinguish taxonomic features that would allow identification as to species, and cryptic species can still remain misidentified. In this study, cells of Pseudo-nitzschia from clonal cultures isolated from seawater were characterized to their species identity using scanning electron microscopy, and subsamples of each culture were used to create an internal transcribed spacer 1 (ITS-1), 5.8S, and ITS-2 ribosomal DNA database for development of species-specific quantitative PCR (qPCR) assays. Once developed, these qPCR assays were applied to field samples collected over a 2-year period in Alfaques Bay in the northwestern Mediterranean Sea to evaluate the possibility of a comprehensive surveillance for all Pseudo-nitzschia spp. using molecular methods to supplement optical microscopy, which can discern taxonomy only to the genus level within this taxon. Total Pseudo-nitzschia cell density was determined by optical microscopy from water samples collected weekly and compared to results obtained from the sum of eight Pseudo-nitzschia species-specific qPCR assays using duplicate samples. Species-specific qPCR followed by melt curve analysis allowed differentiation of amplicons and identification of false positives, and results correlated well with the total Pseudo-nitzschia cell counts from optical microscopy.  相似文献   

14.
The interaction between bacteria and phytoplankton is increasingly becoming recognised as an important factor in the physiology of toxin production and the dynamics of harmful algal blooms (HABs). Bacteria can play a direct or indirect role in the production of biotoxins once solely attributed to microalgae. Evidence implicating bacteria as an autonomous source paralytic shellfish poisoning biotoxins raises the question of autonomous bacterial toxigenesis of the neurotoxin domoic acid (DA), the cause of amnesic shellfish poisoning. Here, we examine whether the previously observed bacterial enhancement of DA production by Pseudo-nitzschia multiseries (Hasle) Hasle may be attributable to independent biotoxin production by the extra-cellular bacteria associated with this diatom. The growth and toxicity of six cultures of xenic P. multiseries clone CLN-1 were followed for 24 days. Up to day 14 (mid-stationary phase), DA production was not statistically different among culture flasks. On day 14, P. multiseries cells were removed by gentle filtration from a set of triplicate flasks, leaving the bacteria in the filtrate. Following the removal of the algal cells, DA in the filtrate ceased to increase. Instead, DA levels continuously declined. A follow-up experiment determined that this was likely caused by photodegradation rather than by bacterial degradation. We conclude that after removing P. multiseries cells, the extra-cellular bacteria remaining in the filtrate were incapable of autonomous DA toxigenesis, even in the presence of P. multiseries exudates. However, scanning electron microscopy revealed that P. multiseries cells harboured epiphytic bacteria, the importance of which can still not be ruled out in DA production.  相似文献   

15.
The population dynamics of Pseudo-nitzschia in relation to environmental factors was investigated from March 2002 to July 2008 in Lim Bay, in the north-eastern Adriatic Sea. Domoic acid was monitored in the breeding population of Mytilus galloprovincialis from 2005 to 2008. The principal-component analysis of environmental parameters showed that the system is mostly temperature driven. The phytoplankton community was mainly composed of diatoms. Pseudo-nitzschia was the dominant diatom, present in 60% of samples, with a maximum (1.6 × 106 cells L−1) contribution up to 97% of the total diatom abundance. Morphological analysis revealed Pseudo-nitzschia manii and potentially toxic Pseudo-nitzschia pseudodelicatissima, Pseudo-nitzschia pungens, Pseudo-nitzschia fraudulenta and Pseudo-nitzschia calliantha as the dominant species in blooms. Pseudo-nitzschia abundance positively correlated to temperature, phosphate and ammonia in accordance with its maximal abundance in the summer/autumn period when fish farms had a maximum impact on the environment. Domoic acid was detected in M. galloprovincialis in concentrations below regulatory limits, ranging from 0.097 to 0.8721 μg g−1 in five cases from April to October 2005 in Lim Bay, but so far it is not clear which of the species was responsible for DA production. This study is also the first record of P. manii, P pungens and P. fraudulenta species in the Adriatic Sea.  相似文献   

16.
Some, but not all, marine pennate diatoms of the genus Pseudo-nitzschia H. Peragallo are associated with the production of domoic acid, a naturally occurring amino acid responsible for amnesic shellfish poisoning. Distinguishing between potentially toxic and nontoxic representatives of this genus is time-consuming and difficult because it demands scanning electron microscopy of cleaned frustules. The objective of this work is to speed and ease identification of these organisms by using whole-cell (in situ) hybridization and species-specific large-subunit ribosomal RNA (LSU rRNA)-targeted oligonucleotide probes. Toward that end, cultures of P. australis Frenguelli, P. pungens (Grunow) Hasle, P. multiseries (Hasle) Hasle, P. fraudulenta (P. T. Cleve) Heiden, P. heimii Manguin, P. delicatissima (P. T. Cleve) Heiden, P. pseudo-delicatissima (Hasle) Hasle, and P. americana (Hasle) Fryxell were screened with a suite of 15 putative species-specific probes. Of those, a subset of eight probes was found that distinguished each species tested. In addition, Pseudo-nitzschia chloroplasts were labeled with a probe directed against a eubacterial-conserved sequence. Identification of new cultures based on their reactivity toward a set of probes agreed with species designations as defined by morphological criteria. Whole-cell hybridization is a rapid, simple, and cost-effective technique for discriminating among cultured Pseudo-nitzschia species.  相似文献   

17.
Species of the diatom genus Pseudo-nitzschia are common in the marine phytoplankton world-wide. Some species of this genus have been proved to be source of domoic acid (DA), a powerful toxin causing Amnesic Shellfish Poisoning (ASP) in humans and probably mass mortality in sea birds and mammals. Net plankton samples obtained during several cruises and seasons from the Pacific coasts of Mexico: western coasts of Baja California, Gulf of California, coasts of the tropical Pacific of Mexico (including the Gulf of Tehuantepec), were analyzed to study the species of the diatom genus Pseudo-nitzschia. Four species ( P. australis, a presumed toxic species, P. fraudulenta, P. lineola, P. pungens) and one former species of the genus, Nitzschia americana were recorded and studied by light and electron microscopy. The most common species was P. pungens, widely distributed along the Pacific coasts of Mexico. All other species appeared occasionally and in low relative abundances. The probable misidentification of P. australis as P. seriata is discussed, as well as the presence of another potentially toxic species, P. delicatissima, in the Gulf of California. No case of toxicity (ASP) has been fully documented and therefore related to toxic Pseudo-nitzschia species in the Gulf of California. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
19.
The region of the nuclear ribosomal DNA (rDNA) operon containing the small subunit (SSU), internal transcribed spacer 1 (ITS1), and a portion of the 5.8s rDNA gene was sequenced in one isolate each of Pseudo-nitzschia multiseries (Hasle) Hasle and Pseudo-nitzschia pungens (Grunow in Cleve & Möller) Hasle. The SSUs of these two species were highly similar, differing only in 14 point mutations and one insertion/deletion in 1774 bp. The ITS1 sequences were more variable, with 57 point mutations and three insertion/deletions in 257 bp. There were no differences in 44 bp of the 5.8S sequences. Restriction fragment patterns (RFPs) for the restriction endonucleases HaeIII, Hha1, and Rsa1 for 13 isolates of P. multiseries from the Atlantic, Pacific, and Gulf coasts of the United States and 16 isolates of P. pungens from the three coasts of the United States, in addition to Japan and China, were compared. There were differences between the RFPs of P. multiseries and P. pungens that corresponded to sites mapped by the DNA sequences, but no infraspecific variation in RFPs was observed for either species. The differences in RFPs correlate with morphological, immunological, and other rDNA differences and support the recognition of these taxa as separate species.  相似文献   

20.
Domoic acid in phytoplankton and fish in San Diego, CA, USA   总被引:1,自引:0,他引:1  
We provide the first confirmation of the presence of domoic acid (DA) in phytoplankton and fish in San Diego, California, based on samples collected between 1 October 2003 and 29 September 2004. In February 2004, we detected DA in seawater samples collected off the Scripps Pier and also in coastal samples as far as 120 km to the north. At the same time we observed populations of toxic Pseudo-nitzschia australis and Pseudo-nitzschia multiseries as high as 7.7 × 104 cells l−1. Elevated concentrations of DA and abundances of the toxic species were also found further north in coastal waters of Orange County and, to a lesser extent, in southern Los Angeles County. DA concentrations in the viscera from four species of fish obtained at or near the Scripps Pier ranged from low to above the critical level for public safety. Samples of mussel tissues from the Scripps Pier analyzed by the State Department of Health Services contained low but detectable amounts of DA. Concomitant sea lion strandings from San Diego to Malibu Beach may be related to the presence of DA. DA in tissue from mussels and fish provides evidence for the local transfer of DA from an algal source to higher trophic levels in San Diego coastal waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号