首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Stochastic population theory makes clear predictions about the effects of reproductive potential and carrying capacity on characteristic time-scales of extinction. At the same time, the effects of habitat size and quality on reproduction and regulation have been hotly debated. To trace the causal relationships among these factors, we looked at the effects of habitat size and quality on extinction time in experimental populations of Daphnia magna. Replicate model systems representative of a broad-spectrum consumer foraging on a continuously supplied resource were established under crossed treatments of habitat size (two levels) and habitat quality (three levels) and monitored until eventual extinction of all populations. Using statistically derived estimates of key parameters, we related experimental treatments to persistence time through their effect on carrying capacity and the population growth rate. We found that carrying capacity and the intrinsic rate of increase were each influenced similarly by habitat size and quality, and that carrying capacity and the intrinsic rate of increase were in turn both correlated with time to population extinction. We expected habitat quality to have a greater influence on extinction. However, owing to an unexpected effect of habitat size on reproductive potential, habitat size and quality were similarly important for population persistence. These results support the idea that improving the population growth rate or carrying capacity will reduce extinction risk and demonstrate that both are possible by improving habitat quality or increasing habitat size.  相似文献   

3.
We develop a numerical model of a lattice community based on Highly Optimized Tolerance (HOT), which relates the evolution of complexity to robustness tradeoffs in an uncertain environment. With the model, we explore scenarios for evolution and extinction which are abstractions of processes which are commonly discussed in biological and ecological case studies. These include the effects of different habitats on the phenotypic traits of the organisms, the effects of different mutation rates on adaptation, fitness, and diversity, and competition between generalists and specialists. The model exhibits a wide variety of microevolutionary and macroevolutionary phenomena which can arise in organisms which are subject to random mutation, and selection based on fitness evaluated in a specific environment. Generalists arise in uniform habitats, where different disturbances occur with equal frequency, while specialists arise when the relative frequency of different disturbances is skewed. Fast mutators are seen to play a primary role in adaptation, while slow mutators preserve well-adapted configurations. When uniform and skewed habitats are coupled through migration of the organisms, we observe a primitive form of punctuated equilibrium. Rare events in the skewed habitat lead to extinction of the specialists, whereupon generalists invade from the uniform habitat, adapt to their new surroundings, ultimately leading their progeny to become vulnerable to extinction in a subsequent rare disturbance.  相似文献   

4.
Bernd Gruber  Klaus Henle 《Oikos》2004,107(2):406-414
Understanding how organisms move through landscapes is important for predicting the effects of landscape structure on the population dynamics and spatial distribution of organisms. Despite the accepted importance, the ability to orientate when moving is a poorly studied phenomenon. In this study we report on a translocation experiment in which we used fluorescent powder to study the ability of the arboreal gecko Gehyra variegata to orientate successfully between trees. The relocation experiment demonstrated the ability of translocated geckos to return to the tree of initial capture. Further, we investigated the set of rules geckos employ, when travelling through their structured habitat. Computer simulations relating capture-mark-recapture data to structural components of the habitat revealed that movement rules taking vision into account showed the best fit to the empirical data. The movement rule: "move randomly to one of the three next neighbouring trees that are visible" described the observed movement best. This movement rule connects all trees in the habitat and lowers the predation risk during movement.  相似文献   

5.
Abstract Movements made by real organisms--such as movements involved in dispersal, migration, and habitat selection--are expected to occasionally be suboptimal because of realistic constraints imposed by incomplete information, perceptual limitations, and stochasticity. Previous theory considering such constraints has shown that movements appropriately conditioned on habitat or resource characteristics can balance out suboptimal components of movement and thereby lead organisms to ideal free distributions and fitness maxima, whereas movements conditioned on fitness differentials cannot. These findings suggest a somewhat paradoxical hypothesis: even if organisms have information about their fitness, movement strategies that maximize fitness may be conditioned on something other than fitness per se. We test this hypothesis by investigating the evolutionary stability of generalized, conditional movement strategies that vary in their use of information on fitness versus information on habitat characteristics. We show that when costs of sensory machinery are included, natural selection should favor movement strategies that completely ignore fitness information. Finally, we synthesize previous work by showing how several previous important theoretical results for adaptive movement strategies are united under our one general model.  相似文献   

6.
Observation of Microorganisms in Soil and Other Natural Habitats   总被引:7,自引:6,他引:1       下载免费PDF全文
A procedure is described for visually observing and following the activities and interactions of bacteria, actinomyctes, fungi, protozoa, nematodes, and plant roots in masses of soil. Specific microscope components and objectives are used, and the numerical apertures are adjusted such that light diffraction colors are produced to allow differentiation of the various biological entities and their habitat materials. Strains or other alterations in the organisms and their habitat are not employed, and time-lapse photography can be used to follow the activities of soil microorganisms and plant roots. As a result of the use of this technique, it is apparent that in situ indigenous soil microorganisms differ from similar organisms grown in the laboratory, but that, under the proper conditions, the state of the organism in either habitat can be altered to match that which occurs in the contrasting habitat.  相似文献   

7.
Spatial and temporal heterogeneity within landscapes influences the distribution and phenotypic diversity of individuals both within and across populations. Phenotype–habitat correlations arise either through phenotypes within an environment altering through the process of natural selection or plasticity, or phenotypes remaining constant but individuals altering their distribution across environments. The mechanisms of non‐random movement and phenotype‐dependent habitat choice may account for associations within highly heterogeneous systems, such as streams, where local adaptation may be negated, plasticity too costly and movement is particularly important. Despite growing attention, however, few empirical tests have yet to be conducted. Here we provide a test of phenotype‐dependent habitat choice and ask: 1) if individuals collected from a single habitat type continue to select original habitat; 2) if decisions are phenotype‐dependent and functionally related to habitat requirements; and 3) if phenotypic‐sorting continues despite increasing population density. To do so we both conducted experimental trials manipulating the density of four stream‐fish species collected from either a single riffle or pool and developed a game‐theoretical model exploring the influence of individuals’ growth rate, sampling and competitive abilities as well as interference on distribution across two habitats as a function of density. Our experimental trials show individuals selecting original versus alternative habitats differed in their morphologies, that morphologies were functionally related to habitat‐type swimming demands, and that phenotypic‐sorting remained significant (although decreased) as density increased. According to our model this only occurs when phenotypes have contrasting habitat preferences and only one phenotype disperses (i.e. selects alternatives) in response to density pressures. This supports our explanation that empirical habitat selection was due to a combination of collecting a fraction of mobile individuals with different habitat preferences and the exclusion of individuals via scramble competition at increased densities. Phenotype‐dependent habitat choice can thereby account for observed patterns of natural stream‐fish distribution.  相似文献   

8.
We study a reaction-diffusion model in a binary environment made of habitat and non-habitat regions. Environmental heterogeneity is expressed through the species intrinsic growth rate coefficient. It was known that, for a fixed habitat abundance, species survival depends on habitat arrangements. Our goal is to describe the spatial configurations of habitat that maximise the chances of survival. Through numerical computations, we find that they are of two main types - ball-shaped or stripe-shaped. We formally prove that these optimal shapes depend on the habitat abundance and on the amplitude of the growth rate coefficient. We deduce from these observations that the optimal shape of the habitat realises a compromise between reducing the detrimental habitat edge effects and taking advantage of the domain boundary effects. In the case of an infinite-periodic environment, we prove that the optimal habitat shapes can be deduced from those in the case of a bounded domain.  相似文献   

9.
A stochastic dynamic programming model is developed of prey choice by three-spined stickleback. The fitness function relates growth rate k from the von Bertalanffy growth equation to stomach fullness. It is shown that the model predicts experimental results. Emphasis is given to handling time as an important variable determining diet. Two handling time vectors are defined, each of which is used to represent the benthic and limnetic morphs found in Paxton Lake, Texada Island, BC, Canada. The model is then used to examine the growth rates to be expected from these two morphs in habitats which vary in the distribution of encounter probabilities with each prey size and the distribution of prey size specific risk of predation. The benthic morph grows faster than the limnetic in most habitats but often the two do as well as each other. In the one habitat where limnetics grow better, they do so because their shorter handling times for small prey counteract the effect of a constant but high risk of predation. The results are discussed in the context of what is known of the ecology and evolution of the two morphs in Paxton Lake. It is concluded that the model is only dealing with conditions in the benthic habitat and data are required on encounter rates and prey size distributions in the linnetic habitat so that the model can be used to predict growth for limnetics.  相似文献   

10.
The movement patterns of species may affect their susceptibility to modified habitat structure. It is likely that sedentary species perceive habitat features at smaller spatial extents compared to mobile species, but there is a lack of experimental research on the effects of fine-scale habitat characteristics on organisms of differing mobility. Spiders display two basic mobility levels based on foraging behavior: web-building species are restricted to specific sites whereas active hunters are mobile. We collected spiders inhabiting sagebrush shrubs with a structurally enhanced, unmodified, or removed understory, to examine (1) whether habitat structure in the immediate vicinity of shrubs affected cursorial and web spiders differently in terms of abundance and species richness and (2) which genera most contributed to changes in community composition. Shrubs without understory had reduced cursorial spider densities and species richness compared to shrubs with added and unmodified understories, whereas web spiders lacked significant responses to treatments. Community-level differences based on relative abundance of genera were detected in cursorial spiders but not in web spiders, despite a strong contribution of the web-building genus Theridion to community dissimilarities. Our results support the hypothesis that sedentary organisms may be sensitive to contiguous habitat at finer spatial scales than cursorial organisms, and highlight the risks associated with only collecting local habitat information when studying mobile species.  相似文献   

11.
While most ecologists agree that the effects of fragmentation on diversity of organisms are predominantly negative and that the scale of fragmentation defines their severity, the role of habitat corridors in mitigating those effects still remains controversial. This ambiguousness rests largely on various difficulties in experimentation, a problem partially solved in the present paper by the use of easily manipulated soil communities. In this 2.5‐year‐long field experiment, we investigated the responses of soil decomposer organisms (from microbes to mesofaunal predators) to habitat fragment size, in the presence or absence of habitat corridors connecting the fragments. The habitat fragments and corridors, composed of forest humus soil, were embedded in mineral soil representing an uninhabitable (or nonpreferred) matrix for the decomposer organisms. The results demonstrate that soil decomposer organisms do respond to changes in their habitat size: the species richness of microarthropods (mites and collembolans) increased as the size of the fragments increased. Especially collembolan species and predatory mites proved to be sensitive to the restricted habitat size, which is suggested to be a consequence of the large proportion of rare species and small and fluctuating population sizes in these groups. Contrary to our expectations, the presence of corridors had no positive effects on species richness or abundance of any of the studied faunas, possibly because of the low quality of the corridors. On the other hand, the biomass of soil fungi increased in the presence of corridors, which apparently provided a preferred pathway for vegetative dispersal of the fungi. Our results indicate that despite their characteristic underground environment, the response of soil decomposer organisms – in particular that of microarthropods – to habitat size is not unlike to that of the larger organisms in aboveground habitats.  相似文献   

12.
高菲  许强  李秀保  何林文  王爱民 《生态学报》2022,42(11):4301-4312
珊瑚礁生态系统是一个高生产力、高生物多样性的特殊海洋生态系统,具有为生物提供栖息地、参与生物地球化学循环、防浪护岸、指示水体污染程度等生态功能。珊瑚礁生态系统的突出特点是其生境异质性很高,各种各样的生境斑块为种类繁多、习性各异的游泳和底栖生物提供栖息场所,这些礁栖生物通过参与各项生态过程而形成各种特定的功能群,共同完成重要的生态功能。在热带珊瑚礁生态系统中,海参是大型底栖动物区系的重要一员。种类繁多的海参具有各自不同的生境选择特征,通过摄食、运动等行为活动发挥着改良底质、促进有机物矿化和营养盐再生等生态作用。近几年来,全球热带海参受人类过度捕捞和珊瑚礁退化的影响而面临资源衰退、物种多样性丧失等问题,深入认识其生态学功能、加强热带海参资源保护迫在眉睫。综述了国内外热带珊瑚礁海参的基础生态学研究进展:海参对珊瑚礁生境斑块呈现显著的偏好选择特征以及种间差异和季节变动,不同生境斑块的食物质量、底质类型和水动力条件是影响海参生境偏好的重要因素;海参通过生物扰动可以改变珊瑚礁生境沉积物的含水量、渗透性、颗粒组成、再矿化率、无机营养物质释放速率以及孔隙水的化学梯度,并增加沉积物中的溶氧浓度、促进溶解...  相似文献   

13.
Many populations are exposed to naturally occurring or synthetic toxicants. An increasing number of studies demonstrate that the toxicity of such compounds is not only dependent on the concentration or load, but also on the biomass or density of exposed organisms. At high biomass, organisms may be able to alleviate adverse effects of the toxicant by actively lowering ambient concentrations through either a joint detoxification mechanism or growth dilution. We show in a conceptual model that this mechanism may potentially lead to alternative stable states if the toxicant is lethal at low densities of organisms, whereas a high density is able to reduce the toxicant concentrations to sub-lethal levels. We show in an example that this effect may be relevant in real ecosystems. In an earlier published experimental laboratory study, we demonstrated that ammonia toxicity in eelgrass is highly dependent on the eelgrass shoot density. Here, we used the results of these experiments to construct a model describing the complex interactions between the temperate seagrass Zostera marina and potentially lethal ammonia. Analyses of the model show that alternative stable states are indeed present over wide ranges of key-parameter settings, suggesting that the mechanism might be important especially in sheltered, eutrophicated estuaries where mixing of the water layer is poor. We argue that the same mechanism could cause alternative stable states in other biological systems as well.  相似文献   

14.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

15.
Species distribution models analyse how species use different types of habitats. Their spatial predictions are often used to prioritize areas for conservation. Individuals may, however, prefer settling in habitat types of low quality compared to other available habitats. This ecological trap phenomenon is usually studied in a small number of habitat patches and consequences at the landscape level are largely unknown. It is therefore often unclear whether the spatial pattern of habitat use is aligned with the behavioural decisions made by the individuals during habitat selection or reflects actual variation in the quality of different habitat types. As species distribution models analyse the pattern of occurrence in different habitats, there is a conservation interest in examining what their predictions mean in terms of habitat quality when ecological traps are operating. Previous work in Belgium showed that red-backed shrikes Lanius collurio are more attracted to newly available clear-cut habitat in plantation forests than to the traditionally used farmland habitat. We developed models with shrike distribution data and compared their predictions with spatial variation in shrike reproductive performance used as a proxy for habitat quality. Models accurately predicted shrike distribution and identified the preferred clear-cut patches as the most frequently used habitat, but reproductive performance was lower in clear-cut areas than in farmland. With human-induced rapid environmental changes, organisms may indeed be attracted to low-quality habitats and occupy them at high densities. Consequently, the predictions of statistical models based on occurrence records may not align with variation in significant population parameters for the maintenance of the species. When species expand their range to novel habitats, such models are useful to document the spatial distribution of the organisms, but data on population growth rates are worth collecting before using model predictions to guide the spatial prioritization of conservation actions.  相似文献   

16.
We sought to understand how the separation of habitats into spatially isolated fragments influences the abundance of organisms. Using a simple, deterministic model of population growth, we compared analytically exact solutions predicting abundance of consumers in two isolated patches with abundance of consumers in a single large patch where the carrying capacity of the large patch is the sum of the carrying capacities of the isolated ones. For the deterministic model, the effect of fragmentation was to slow the rate of population growth in the fragmented habitat relative to the intact one. We also analyzed a stochastic version of the model to examine the effect of fragmentation on population abundance when resources vary randomly in time. For the stochastic model, the effect of fragmentation was to reduce population abundance. We proved in closed-form, that for a non-equilibrium population exhibiting logistic population growth, fragmentation will reduce population size even when the total carrying capacity is not affected by fragmentation. We provide a theoretical basis for the prediction that habitat fragmentation amplifies the effect of habitat loss on the abundance of mobile organisms.  相似文献   

17.
Climate instability strongly affects overwintering conditions in organisms living in a strongly seasonal environment and consequently their survival and population dynamics. Food, predation and density effects are also strong during winter, but the effect of fragmentation of ground vegetation on ground-dwelling small mammals is unknown. Here, we report the results of a winter experiment on the effects of habitat fragmentation and food on experimental overwintering populations of bank voles Myodes glareolus. The study was conducted in large outdoor enclosures containing one large, two medium-sized or four small habitat patches or the total enclosure area covered with protective tall-grass habitat. During the stable snow cover of midwinter, only food affected the overwintering success, body condition, trappability and earlier onset of breeding in bank voles. However, after the snow thaw in spring, habitat fragmentation gained importance again, and breeding activities increased the movements of voles in the most fragmented habitat. The use of an open, risky matrix area increased along the habitat fragmentation. Our experiment showed that long-lasting stable snow cover protects overwintering individuals in otherwise exposed and risky ground habitats. We conclude that a stable winter climate and snow cover should even out habitat fragmentation effects on small mammals. However, along prolonged snow-free early winter and in an earlier spring thaw, this means loss of protection by snow cover both in terms of thermoregulation and predation. Thus, habitat cover is important for the survival of small ground-dwelling boreal mammals also during the non-breeding season.  相似文献   

18.
High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year), spatially extensive (∼115,000 kms2) dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.  相似文献   

19.
1. Ecosystem processes depend on the biomass of the involved organisms, but their functional diversity may play an additional role. In particular, the exclusion of key functional groups through habitat disturbance may lead to the breakdown of ecosystem functions. Dung removal is an important process contributing to nutrient cycling and thus productivity in grazed ecosystems. 2. This study investigated the role of different functional groups of dung beetles in dung removal in different habitats within a wood-pasture in two different seasons. An experimental setting with 12 blocks and 108 dung pads was used to investigate short-term dung removal over 1 week of exposure. 3. Dung removal was most strongly affected by habitat type, with almost 40% lower levels in grassland than in adjacent forest and forest gaps. Of all assemblage characteristics, total biomass of tunneller species was the strongest predictor of dung removal, whereas functional diversity showed no significant effect. In accordance with the dung removal pattern at habitat type level, densities of large tunnellers were suppressed in grassland compared with forest. 4. It is concluded that dung removal is habitat-specific and large tunnellers play a disproportionate role in this important ecosystem function in temperate forests.  相似文献   

20.
Bacteria receive signals from diverse members of their biotic environment. They sense their own species through the process of quorum sensing, which detects the density of bacterial cells and regulates functions such as bioluminescence, virulence, and competence. Bacteria also respond to the presence of other microorganisms and eukaryotic hosts. Most studies of microbial communication focus on signaling between the microbe and one other organism for empirical simplicity and because few experimental systems offer the opportunity to study communication among various types of organisms. But in the real biological world, microorganisms must carry on multiple molecular conversations simultaneously between diverse organisms, thereby constructing communication networks. We propose that biocontrol of plant disease, the process of suppressing disease through application of a microorganism, offers a model for the study of communication among multiple organisms. Successful biocontrol requires the sending and receiving of signals between the biocontrol agent and the pathogen, plant host, and microbial community surrounding the host. We are using Bacillus cereus, a biocontrol agent, and the organisms it must interact with, to dissect a communication network. This system offers an excellent starting point for study because its members are defined and well studied. An understanding of signaling in the B. cereus biocontrol system may provide a model for network communication among organisms that share a habitat and provide a new angle of analysis for understanding the interconnections that define communities. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号