首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DC) represent a rather heterogeneous cell population with regard to morphology, phenotype, and function and, like most cells of the immune system, are subjected to a continuous renewal process. CD103(+) (integrin alpha(E)) DC have been identified as a major mucosal DC subset involved in the induction of tissue-specific homing molecules on T cells, but little is known about progenitors able to replenish this DC subset. Herein we report that lineage (lin)(-)CX(3)CR1(+)c-kit(+) (GFP(+)c-kit(+)) bone marrow cells can differentiate to either CD11c(+)CD103(-) or CD11c(+)CD103(+) DC in vitro and in vivo. Gene expression as well as functional assays reveal distinct phenotypical and functional properties of both subsets generated in vitro. CD103(-) DC exhibit enhanced phagocytosis and respond to LPS stimulation by secreting proinflammatory cytokines, whereas CD103(+) DC express high levels of costimulatory molecules and efficiently induce allogeneic T cell proliferation. Following adoptive transfer of GFP(+)c-kit(+) bone marrow cells to irradiated recipients undergoing allergic lung inflammation, we identified donor-derived CD103(+) DC in lung and the lung-draining bronchial lymph node. Collectively, these data indicate that GFP(+)c-kit(+) cells contribute to the replenishment of CD103(+) DC in lymphoid and nonlymphoid organs.  相似文献   

2.
Dendritic cells (DC) are able to capture, process, and present exogenous Ag to CD8(+) T lymphocytes through MHC class I, a process referred to as cross-presentation. In this study, we demonstrate that CD103(+) (CD11c(high)CD11b(low)) and CD103(-) (CD11c(int)CD11b(high)) DC residing in the lung-draining bronchial lymph node (brLN) have evolved to acquire opposing functions in presenting innocuous inhaled Ag. Thus, under tolerogenic conditions, CD103(-) DC are specialized in presenting innocuous Ag to CD4(+) T cells, whereas CD103(+) DC, which do not express CD8alpha, are specialized in presenting Ag exclusively to CD8(+) T cells. In CCR7-deficient but not in plt/plt mice, Ag-carrying CD103(+) DC are largely absent in the brLN, although CD103(+) DC are present in the lung of CCR7-deficient mice. As a consequence, adoptively transferred CD8(+) T cells can be activated under tolerizing conditions in plt/plt but not in CCR7-deficient mice. These data reveal that CD103(+) brLN DC are specialized in cross-presenting innocuous inhaled Ag in vivo. Because these cells are largely absent in CCR7(-/-) mice, our findings strongly suggest that brLN CD103(+) DC are lung-derived and that expression of CCR7 is required for their migration from the lung into its draining lymph node.  相似文献   

3.
Dendritic Cells (DC) represent a key lung immune cell population, which play a critical role in the antigen presenting process and initiation of the adaptive immune response. The study of DCs has largely benefited from the joint development of fluorescence microscopy and knock-in technology, leading to several mouse strains with constitutively labeled DC subsets. However, in the lung most transgenic mice do express fluorescent protein not only in DCs, but also in closely related cell lineages such as monocytes and macrophages. As an example, in the lungs of CX(3)CR1(+/gfp) mice the green fluorescent protein is expressed mostly by both CD11b conventional DCs and resident monocytes. Despite this non-specific staining, we show that a shape criterion can discriminate these two particular subsets. Implemented in a cell tracking code, this quantified criterion allows us to analyze the specific behavior of DCs under inflammatory conditions mediated by lipopolysaccharide on lung explants. Compared to monocytes, we show that DCs move slower and are more confined, while both populations do not have any chemotactism-associated movement. We could generalize from these results that DCs can be automatically discriminated from other round-shaped cells expressing the same fluorescent protein in various lung inflammation models.  相似文献   

4.
CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults.  相似文献   

5.
Myeloid cell recruitment is a characteristic feature of bacterial meningitis. However, the cellular mechanisms important for the control of Streptococcus pneumoniae infection remain largely undefined. Previous pharmacological or genetic studies broadly depleted many myeloid cell types within the meninges, which did not allow defining the function of specific myeloid subsets. Herein we show that besides CD11b(+)Ly-6G(+)CCR2(-) granulocytes, also CD11b(+)Ly-6C(high)CCR2(+) but not Ly-6C(low)CCR2(-) monocytes were recruited in high numbers to the brain as early as 12 h after bacterial challenge. Surprisingly, CD11b(+)Ly-6C(high)CCR2(+) inflammatory monocytes modulated local CXCL2 and IL-1beta production within the meninges but did not provide protection against bacterial infection. Consistent with these results, CCR2 deficiency strongly impaired monocyte recruitment to the infected brains but was redundant for disease pathogenesis. In contrast, specific depletion of polymorphonuclear granulocytes caused elevated local bacterial titer within the brains, led to an aggravated clinical course, and enhanced mortality. These findings demonstrate that Ly-6C(high)CCR2(+) inflammatory monocytes play a redundant role for the host defense during bacterial meningitis and that predominantly CD11b(+)Ly-6G(+)CCR2(-) myeloid cells are involved in the restriction of the extracellular bacteria.  相似文献   

6.
The origins of dendritic cells (DCs) are poorly understood. In inflammation, DCs can arise from blood monocytes (M(O)s), but their steady-state origin may differ, as shown for Langerhans cells. Two main subsets of M(O)s, defined by expression of different chemokine receptors, CCR2 and CX(3)CR1, have been described in mice and humans. Recent studies have identified the inflammatory function of CCR2(high)CX(3)CR1(low) M(O)s but have not defined unambiguously the origin and fate of CCR2(low)CX(3)CR1(high) cells. In this study, we show that rat M(O)s can also be divided into CCR2(high)CX(3)CR1(low)(CD43(low)) and CCR2(low)CX(3)CR1(high)(CD43(high)) subsets with distinct migratory properties in vivo. Using whole body perfusion to obtain M(O)s, including the marginating pool, we show by adoptive transfer that CD43(low) M(O)s can differentiate into CD43(high) M(O)s in blood without cell division. By adoptive transfer of blood M(O)s followed by collection of pseudoafferent lymph, we show for the first time that a small proportion of intestinal lymph DCs are derived from CCR2(low)CX(3)CR1(high)(CD43(high)) blood M(O)s in vivo under steady-state conditions. This study confirms one of the possible origins of CCR2(low)CX(3)CR1(high) blood M(O)s and indicate that they may contribute to migratory intestinal DCs in vivo in the absence of inflammatory stimuli.  相似文献   

7.
Dendritic cells (DC) play important roles in both tolerance and immunity to β cells in type 1 diabetes. How and why DC can have diverse and opposing functions in islets remains elusive. To answer these questions, islet DC subsets and their specialized functions were characterized. Under both homeostatic and inflammatory conditions, there were two main tissue-resident DC subsets in islets, defined as CD11b(lo/-)CD103(+)CX3CR1(-) (CD103(+) DC), the majority of which were derived from fms-like tyrosine kinase 3-dependent pre-DC, and CD11b(+)CD103(-)CX3CR1(+) (CD11b(+) DC), the majority of which were derived from monocytes. CD103(+) DC were the major migratory DC and cross-presented islet-derived Ag in the pancreatic draining lymph node, although this DC subset displayed limited phagocytic activity. CD11b(+) DC were numerically the predominant subset (60-80%) but poorly migrated to the draining lymph node. Although CD11b(+) DC had greater phagocytic activity, they poorly presented Ag to T cells. CD11b(+) DC increased in numbers and percentage during T cell-mediated insulitis, suggesting that this subset might be involved in the pathogenesis of diabetes. These data elucidate the phenotype and function of homeostatic and inflammatory islet DC, suggesting differential roles in islet immunity.  相似文献   

8.
Gastrointestinal helminth infections are extremely prevalent in many human populations and are associated with downmodulated immune responsiveness. In the experimental model system of Heligmosomoides polygyrus, a chronic infection establishes in mice, accompanied by a modulated Th2 response and increased regulatory T cell (Treg) activity. To determine if dendritic cell (DC) populations in the lymph nodes draining the intestine are responsible for the regulatory effects of chronic infection, we first identified a population of CD11c(lo) nonplasmacytoid DCs that expand after chronic H. polygyrus infection. The CD11c(lo) DCs are underrepresented in magnetic bead-sorted preparations and spared from deletion in CD11c-diptheria toxin receptor mice. After infection, CD11c(lo) DCs did not express CD8, CD103, PDCA, or Siglec-H and were poorly responsive to TLR stimuli. In DC/T cell cocultures, CD11c(lo) DCs from naive and H. polygyrus-infected mice could process and present protein Ag, but induced lower levels of Ag-specific CD4(+) T cell proliferation and effector cytokine production, and generated higher percentages of Foxp3(+) T cells in the presence of TGF-β. Treg generation was also dependent on retinoic acid receptor signaling. In vivo, depletion of CD11c(hi) DCs further favored the dominance of the CD11c(lo) DC phenotype. After CD11c(hi) DC depletion, effector responses were inhibited dramatically, but the expansion in Treg numbers after H. polygyrus infection was barely compromised, showing a significantly higher regulatory/effector CD4(+) T cell ratio compared with that of CD11c(hi) DC-intact animals. Thus, the proregulatory environment of chronic intestinal helminth infection is associated with the in vivo predominance of a newly defined phenotype of CD11c(lo) tolerogenic DCs.  相似文献   

9.
The protective host immune response to viral infections requires both effective innate and adaptive immune responses. Cross-talk between the two responses is coordinated by the chemokine network and professional APCs such as dendritic cells (DCs). In mice, subpopulations of myeloid DCs in peripheral tissues such as lungs and in blood express CX3CR1 depending on the inflammation state. We thus examined the host response of mice deficient in the chemokine receptor CX3CR1 to an intranasal vaccinia virus infection. CX3CR1-deficient mice displayed significantly more severe morbidity and mortality compared with control wild-type mice within 10 d following vaccinia virus infection. CX3CR1(-/-) mice had increased viral loads and a reduced T cell response compared with wild-type mice. Finally, an adoptive transfer of CX3CR1(+/+) DCs completely protected CX3CR1(-/-) mice to a previously lethal infection. This study therefore opens up the possibility of novel antiviral therapeutics targeting lung DC recruitment.  相似文献   

10.
Dendritic cells (DC) mediate airway Ag presentation and play key roles in asthma and infections. Although DC subsets are known to perform different functions, their occurrence in mouse lungs has not been clearly defined. In this study, three major lung DC populations have been found. Two of them are the myeloid and plasmacytoid DC (PDC) well-characterized in other lymphoid organs. The third and largest DC population is the integrin alpha(E) (CD103) beta(7)-positive and I-A(high)CD11c(high)-DC population. This population was found to reside in the lung mucosa and the vascular wall, express a wide variety of adhesion and costimulation molecules, endocytose avidly, present Ag efficiently, and produce IL-12. Integrin alpha(E)beta(7)(+) DC (alphaE-DC) were distinct from intraepithelial lymphocytes and distinguishable from CD11b(high) myeloid and mPDCA-1(+)B220(+)Gr-1(+) PDC populations in surface marker phenotype, cellular functions, and tissue localization. Importantly, this epithelial DC population expressed high levels of the Langerhans cell marker Langerin and the tight junction proteins Claudin-1, Claudin-7, and ZO-2. In mice with induced airway hyperresponsiveness and eosinophilia, alphaE-DC numbers were increased in lungs, and their costimulation and adhesion molecules were up-regulated. These studies show that alphaE-DC is a major and distinct lung DC population and a prime candidate APC with the requisite surface proteins for migrating across the airway epithelia for Ag and pathogen capture, transport, and presentation. They exhibit an activated phenotype in allergen-induced lung inflammation and may play significant roles in asthma pathogenesis.  相似文献   

11.
Dendritic cells (DC) migrate from sites of inflammation to lymph nodes to initiate primary immune responses, but the molecular mechanisms by which DC are replenished in the lungs during ongoing pulmonary inflammation are unknown. To address this question, we analyzed the secondary pulmonary immune response of Ag-primed mice to intratracheal challenge with the particulate T cell-dependent Ag sheep erythrocytes (SRBC). We studied wild-type C57BL/6 mice and syngeneic gene-targeted mice lacking either both endothelial selectins (CD62E and CD62P), or the chemokine receptors CCR2 or CCR6. DC, defined as non-autofluorescent, MHC class II(+)CD11c(mod) cells, were detected in blood, enzyme-digested minced lung, and bronchoalveolar lavage fluid using flow cytometry and immunohistology. Compared with control mice, Ag challenge increased the frequency and absolute numbers of DC, peaking at day 1 in peripheral blood (6.5-fold increase in frequency), day 3 in lung mince (20-fold increase in total DC), and day 4 in bronchoalveolar lavage fluid (55-fold increase in total DC). Most lung DC expressed CD11c, CD11b, and low levels of MHC class II, CD40, CD80, and CD86, consistent with an immature myeloid phenotype. DC accumulation depended in part upon CCR2 and CCR6, but not endothelial selectins. Thus, during lung inflammation, immature myeloid DC from the bloodstream replace emigrating immature DC and transiently increase total intrapulmonary APC numbers. Early DC recruitment depends in part on CCR2 to traverse vascular endothelium, plus CCR6 to traverse alveolar epithelium. The recruitment of circulating immature DC represents a potential therapeutic step at which to modulate immunological lung diseases.  相似文献   

12.
CD103(+) dendritic cells (DCs) are the major conventional DC population in the intestinal lamina propria (LP). Our previous report showed that a small number of cells in the LP could be classified into four subsets based on the difference in CD11c/CD11b expression patterns: CD11c(hi)CD11b(lo) DCs, CD11c(hi)CD11b(hi) DCs, CD11c(int)CD11b(int) macrophages, and CD11c(int)CD11b(hi) eosinophils. The CD11c(hi)CD11b(hi) DCs, which are CD103(+), specifically express TLR5 and induce the differentiation of naive B cells into IgA(+) plasma cells. These DCs also mediate the differentiation of Ag-specific Th17 and Th1 cells in response to flagellin. We found that small intestine CD103(+) DCs of the LP (LPDCs) could be divided into a small subset of CD8α(+) cells and a larger subset of CD8α(-) cells. Flow cytometry analysis revealed that CD103(+)CD8α(+) and CD103(+)CD8α(-) LPDCs were equivalent to CD11c(hi)CD11b(lo) and CD11c(hi)CD11b(hi) subsets, respectively. We analyzed a novel subset of CD8α(+) LPDCs to elucidate their immunological function. CD103(+)CD8α(+) LPDCs expressed TLR3, TLR7, and TLR9 and produced IL-6 and IL-12p40, but not TNF-α, IL-10, or IL-23, following TLR ligand stimulation. CD103(+)CD8α(+) LPDCs did not express the gene encoding retinoic acid-converting enzyme Raldh2 and were not involved in T cell-independent IgA synthesis or Foxp3(+) regulatory T cell induction. Furthermore, CD103(+)CD8α(+) LPDCs induced Ag-specific IgG in serum, a Th1 response, and CTL activity in vivo. Accordingly, CD103(+)CD8α(+) LPDCs exhibit a different function from CD103(+)CD8α(-) LPDCs in active immunity. This is the first analysis, to our knowledge, of CD8α(+) DCs in the LP of the small intestine.  相似文献   

13.

Background

Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents.

Methodology/Principal Findings

We created CCR2-red fluorescent protein (RFP) knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6Chi/CCR2hi monocytes. Surprisingly, neutrophils, not Ly6Clo monocytes, largely replaced Ly6Chi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia.

Conclusion/Significance

These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.  相似文献   

14.
The uptake, transport, and presentation of Ags by lung dendritic cells (DCs) are central to the initiation of CD8 T cell responses against respiratory viruses. Although several studies have demonstrated a critical role of CD11b(low/neg)CD103(+) DCs for the initiation of cytotoxic T cell responses against the influenza virus, the underlying mechanisms for its potent ability to prime CD8 T cells remain poorly understood. Using a novel approach of fluorescent lipophilic dye-labeled influenza virus, we demonstrate that CD11b(low/neg)CD103(+) DCs are the dominant lung DC population transporting influenza virus to the posterior mediastinal lymph node as early as 20 h postinfection. By contrast, CD11b(high)CD103(neg) DCs, although more efficient for taking up the virus within the lung, migrate poorly to the lymph node and remain in the lung to produce proinflammatory cytokines instead. CD11b(low/neg)CD103(+) DCs efficiently load viral peptide onto MHC class I complexes and therefore uniquely possess the capacity to potently induce proliferation of naive CD8 T cells. In addition, the peptide transporters TAP1 and TAP2 are constitutively expressed at higher levels in CD11b(low/neg)CD103(+) DCs, providing, to our knowledge, the first evidence of a distinct regulation of the Ag-processing pathway in these cells. Collectively, these results show that CD11b(low/neg)CD103(+) DCs are functionally specialized for the transport of Ag from the lung to the lymph node and also for efficient processing and presentation of viral Ags to CD8 T cells.  相似文献   

15.
Recently, attention has focussed on phenotypic and functional differences between classic myeloid dendritic cells (DC), and DC that reportedly develop from an early, committed lymphoid precursor. In mice, DC from these separate hemopoietic lineages differ by their surface expression of CD8 alpha. We undertook a comparative study of CD8 alpha+ (CD11blow; lymphoid-related) and CD8 alpha- (CD11bhigh; myeloid) DC isolated from mouse liver. CD8 alpha+ and CD8 alpha- DC each constituted 相似文献   

16.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   

17.
Mucus alterations are a feature of ulcerative colitis (UC) and can drive inflammation by compromising the mucosal barrier to luminal bacteria. The exact pathogenesis of UC remains unclear, but CD4+ T cells reacting to commensal antigens appear to contribute to pathology. Given the unique capacity of dendritic cells (DCs) to activate naive T cells, colon DCs may activate pathogenic T cells and contribute to disease. Using Muc2-/- mice, which lack a functional mucus barrier and develop spontaneous colitis, we show that colitic animals have reduced colon CD103+CD11b- DCs and increased CD103-CD11b+ phagocytes. Moreover, changes in colonic DC subsets and distinct cytokine patterns distinguish mice with distally localized colitis from mice with colitis spread proximally. Specifically, mice with proximally spread, but not distally contained, colitis have increased IL-1β, IL-6, IL-17, TNFα, and IFNγ combined with decreased IL-10 in the distal colon. These individuals also have increased numbers of CD103+CD11b+ DCs in the distal colon. CD103+CD11b+ DCs isolated from colitic but not noncolitic mice induced robust differentiation of Th17 cells but not Th1 cells ex vivo. In contrast, CD103-CD11b+ DCs from colitic Muc2-/- mice induced Th17 as well as Th1 differentiation. Thus, the local environment influences the capacity of intestinal DC subsets to induce T cell proliferation and differentiation, with CD103+CD11b+ DCs inducing IL-17-producing T cells being a key feature of extensively spread colitis.  相似文献   

18.
We demonstrate that soluble CD16 (sCD16; soluble Fc gamma RIII), a natural ligand of CR3, inhibits the infection of monocytes by primary R5 HIV-1 strain opsonized with serum of seronegative individuals. Inhibition of monocyte infection by sCD16 was similar to that observed with anti-CR3 mAbs, indicating that opsonized HIV may use a CR3-dependent pathway for entry in monocytic cells. Cultured human monocytes express both CR3 (CD11b/CD18) and CCR5 receptors. RANTES, the natural ligand of CCR5, inhibited infection of monocytes with unopsonized HIV particles and partially that of monocytes infected with HIV particles opsonized with complement-derived fragments. Although HIV-infected monocytes from homozygous CCR5 Delta 32/Delta 32 (CCR5(-/-)) individuals produce low levels of p24, cells infected with opsonized particles produced higher levels of p24 than cells infected with unopsonized particles. Our results thus suggest that CR3 may represent an alternative coreceptor to CCR5 of opsonized primary R5 virus entry into monocytes/macrophages. We also observed that the concentration of sCD16 is greatly decreased in sera of HIV-infected patients with low lymphocyte CD4(+) counts. Taken together, our findings suggest that sCD16, present in plasma, may play an important role in controlling HIV-1 spread.  相似文献   

19.
Increases in numbers of lung dendritic cells (DC) observed during respiratory viral infections are assumed to be due to recruitment from bone marrow precursors. No local production has been demonstrated. In this study, we isolated defined populations of murine lung cells based on CD11c and MHC class II (MHC II) expression. After culture for 12 days with GM-CSF, we analyzed cell numbers, DC surface markers, and Ag-presenting capacity. Only CD11c+ MHC II- cells from naive mice proliferated, yielding myeloid DC, which induced Ag-specific proliferation of naive T cells. After respiratory syncytial virus (RSV) infection, numbers of pulmonary CD11c+ MHC II- precursor cells were significantly reduced and DC could not be generated. Moreover, RSV infection prevented subsequent in vivo expansion of pulmonary DC in response to influenza infection or LPS treatment. These results provide direct evidence of local generation of fully functional myeloid DC in the lung from CD11c+ MHC II(-) precursor cells that are depleted by RSV infection, leading to an inability to expand lung DC numbers in response to subsequent viral infection or exposure to bacterial products. This depletion of local DC precursors in respiratory viral infections may be important in explaining complex interactions between multiple and intercurrent pulmonary infections.  相似文献   

20.
CX3CR1, an important chemokine receptor in dendritic cells (DCs), is linked to the progression of atherosclerotic plaques. However, the mechanism(s) determining the role of CX3CR1 in atherosclerosis have not been clearly elucidated. In this study, we developed DCs from monocytes of Sprague-Dawley (SD) rats in the presence of recombinant human granulocyte–macrophage colony-stimulating factor (GM-CSF) and recombinant human interleukin-4 (IL-4). The presence of recombinant human TNF-α and LPS forced the cells to mature. When compared to immature DCs, flow cytometry (FACS) analysis revealed that mature DCs display a sustained increase in the levels of CD11c, CD86, and CD80 expression. The expression of Fractalkine (FKN) in endothelial cells (ECs) contributes to the maturation of DCs and expression of CX3CR1. We revealed that mRNA expression levels of CX3CR1 in mature DCs are significantly higher than those of immature DCs (P < 0.001). Transfection of DCs with siRNA specific for the CX3CR1 gene resulted in potent suppression of gene expression and inhibition of interactions between DCs and ECs. Based on these data, we hypothesized that CX3CR1 contributes to the DC–EC interaction. CX3CR1 may serve as a new target molecule for increasing therapeutic interactions in atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号