首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MHC class II transactivator (CIITA) is a critical regulator of MHC class II genes and other genes involved in the Ag presentation pathway. CIITA-deficient mice lack MHC class II expression on almost all APCs. In this study, we show that these mice also have aberrant Fas ligand expression on both CD4 T cells and B cells. We found that Fas ligand expression was greatly increased on CIITA-deficient CD4 T cells during the Th1 differentiation process. However, both CIITA-deficient and control Th1 effector cells up-regulated Fas ligand to similar levels if cells were reactivated. The introduction of CIITA into primary CD4 T cells via retroviral infection resulted in a reduction in the level of Fas ligand and delay in apoptosis after activation. Interestingly, activated B cells from the CIITA-deficient mice also showed increased levels of Fas ligand that could be to some degree inhibited by the introduction of IL-4.  相似文献   

2.
3.
NKT cells are a versatile population whose immunoregulatory functions are modulated by their microenvironment. We demonstrate herein that in addition to their IFN-gamma production, NKT lymphocytes stimulated with IL-12 plus IL-18 in vitro underwent activation in terms of CD69 expression, blast transformation, and proliferation. Yet they were unable to survive in culture because, once activated, they were rapidly eliminated by apoptosis, even in the presence of their survival factor IL-7. This process was preceded by up-regulation of Fas (CD95) and Fas ligand expression in response to IL-12 plus IL-18 and was blocked by zVAD, a large spectrum caspase inhibitor, as well as by anti-Fas ligand mAb, suggesting the involvement of the Fas pathway. In accordance with this idea, NKT cells from Fas-deficient C57BL/6-lpr/lpr mice did not die in these conditions, although they shared the same features of cell activation as their wild-type counterpart. Activation-induced cell death occurred also after TCR engagement in vivo, since NKT cells became apoptotic after injection of their cognate ligand, alpha-galactosylceramide, in wild-type, but not in Fas-deficient, mice. Taken together, our data provide the first evidence for a new Fas-dependent mechanism allowing the elimination of TCR-dependent or -independent activated NKT cells, which are potentially dangerous to the organism.  相似文献   

4.
MHC class II molecules are pivotal for the adaptive immune system, because they guide the development and activation of CD4+ T helper cells. Fulfilling these functions requires that the genes encoding MHC class II molecules are transcribed according to a strict cell-type-specific and quantitatively modulated pattern. This complex gene-expression profile is controlled almost exclusively by a single master regulatory factor, which is known as the class II transactivator. As we discuss here, differential activation of the three independent promoters that drive expression of the gene encoding the class II transactivator ultimately determines the exquisitely regulated pattern of MHC class II gene expression.  相似文献   

5.
6.
7.
Modulation of gene expression by the MHC class II transactivator   总被引:6,自引:0,他引:6  
The class II transactivator (CIITA) is a master regulator of MHC class II expression. CIITA also modulates the expression of MHC class I genes, suggesting that it may have a more global role in gene expression. To determine whether CIITA regulates genes other than the MHC class II and I family, DNA microarray analysis was used to compare the expression profiles of the CIITA expressing B cell line Raji and its CIITA-negative counterpart RJ2.2.5. The comparison identified a wide variety of genes whose expression was modulated by CIITA. Real time RT-PCR from Raji, RJ2.2.5, an RJ2.2.5 cell line complemented with CIITA, was performed to confirm the results and to further identify CIITA-regulated genes. CIITA-regulated genes were found to have diverse functions, which could impact Ag processing, signaling, and proliferation. Of note was the identification of a set of genes localized to chromosome 1p34-35. The global modulation of genes in a local region suggests that this region may share some regulatory control with the MHC.  相似文献   

8.
9.
10.
A Kaser  S Nagata  H Tilg 《Cytokine》1999,11(10):736-743
Interferon alpha (IFN-alpha) plays a prominent role in the therapy of a variety of diseases. The Fas/FasL system is crucial for the cytotoxic function and the peripheral elimination of activated T lymphocytes (ATC) by a mechanism referred to as activation-induced cell death (AICD). Recent studies suggest a link between IFN-alpha, the 2', 5'- oligoadenylate system and apoptosis. We therefore asked whether IFN-alpha is able to regulate the Fas/FasL pathway and thereby affects AICD. Peripheral blood mononuclear cells (PBMC), purified T cells and ATC of healthy volunteers were stimulated with various agents and the influence of IFN-alpha on Fas/FasL was assessed by mRNA and protein studies. The proportion of ATC undergoing AICD or anti-Fas-induced apoptosis was determined by FITC-annexin V staining and propidium iodide uptake. IFN-alpha upregulated mRNA expression of Fas and FasL in activated PBMC. Furthermore the concentration of the soluble form of FasL (sFasL) was increased in PBMC and T cells co-stimulated with IFN-alpha and various agents, whereas Fas surface expression was enhanced by IFN-alpha alone. IFN-alpha enhanced apoptosis induced by anti-Fas antibody and augmented AICD via the Fas/FasL pathway. IFN-alpha-regulated AICD may contribute to lymphopenia observed during IFN-alpha therapy. Our data further support that IFN-alpha is a multifunctional cytokine with profound effects on the immune cascades.  相似文献   

11.
MHC class I and class II are crucial for the adaptive immune system. Although regulation of MHC class II expression by CIITA has long been recognized, the mechanism of MHC class I transactivation has been largely unknown until the recent discovery of NLRC5/class I transactivator. In this study, we show using Nlrc5-deficient mice that NLRC5 is required for both constitutive and inducible MHC class I expression. Loss of Nlrc5 resulted in severe reduction in the expression of MHC class I and related genes such as β(2)-microglobulin, Tap1, or Lmp2, but did not affect MHC class II levels. IFN-γ stimulation could not overcome the impaired MHC class I expression in Nlrc5-deficient cells. Upon infection with Listeria monocyogenes, Nlrc5-deficient mice displayed impaired CD8(+) T cell activation, accompanied with increased bacterial loads. These findings illustrate critical roles of NLRC5/class I transactivator in MHC class I gene regulation and host defense by CD8(+) T cell responses.  相似文献   

12.
13.
Based on the previous observation that RANTES mediates the cytotoxic activity of human HIV-specific CD8+ T cells via the chemokine receptor CCR3, we studied the effect of this chemokine on different effector CD8+ cytolytic cells requiring Fas/Fas ligand (FasL) or perforin-dependent pathway. In CTLs derived from PBMCs of HIV-infected patients, both the spontaneous and the RANTES-induced cytotoxicity were inhibited by anti-FasL neutralizing Abs. In contrast, allogeneic CTLs or NK cells killing through perforin were not affected by RANTES and anti-FasL Ab. Accordingly, RANTES enhanced the expression of FasL in a concentration- and time-dependent manner in HIV-specific CTLs, whereas anti-RANTES Ab decreased markedly FasL expression. Finally, cell surface expression of FasL protein in HIV-specific CTLs was also up-regulated by eotaxin, a selective ligand for CCR3. Our observations show that the action of RANTES via CCR3 is necessary to regulate FasL expression on HIV-specific CD8+ T cells that kill through the Fas/FasL pathway.  相似文献   

14.
15.
Activation-induced cell death (AICD) plays a critical role in the maintenance of homeostasis and peripheral tolerance in the immune system, and is mediated by Fas ligand (FasL) expression and the interaction between Fas and FasL. In the present study, we examined the role of the ubiquitin-proteasome system in AICD using T cell hybridoma N3-6-71 cells. The peptidyl aldehyde proteasome inhibitor carbobenzoxyl-Ile-Glu(O-t-butyl)-Ala-leucinal (PSI) blocked T cell receptor (TCR) stimulation-induced apoptosis in the T cell hybridoma. Fas and FasL gene expression and mouse FasL promoter activity following TCR stimulation were suppressed by PSI pretreatment. Deletion or point mutation of the kappaB site in the FasL promoter region did not suppress inducible FasL promoter activity effectively. PSI blocked extracellular signal-regulated kinase (ERK) activity induced by TCR stimulation, but had no effect on c-jun N-terminal kinase activation. ERK activation was essential for FasL expression and AICD. The initial tyrosine phosphorylation steps following TCR stimulation, i.e., phosphorylation of CD3zeta and Vav, were not altered by PSI. These data suggest that the ubiquitin-proteasome system has some regulatory function at an intermediate step between the initial tyrosine phosphorylation steps and ERK activation in AICD.  相似文献   

16.
17.
18.
Fas ligand (FasL)-expressing tumor cells are found to effectively mediate rejection of the coinoculated FasL negative parental cells while having no effect on the growth of histologically distinct tumor cells. These observations indicate that FasL induces a specific immune response against Ag derived from FasL-bearing tumors and suggest a possible role for FasL in tumor Ag presentation. Indeed, tumor cells expressing FasL can efficiently interact with dendritic cells (DCs) and this interaction requires the expression of membrane-bound FasL on tumors and Fas on DCs. Moreover, DCs cocultured with FasL-expressing tumors are able to elicit a tumor-specific immune response in vivo, suggesting that DCs acquire tumor Ag during the Fas/FasL-mediated DC-tumor contact. These results identify a novel role for FasL in augmenting tumor-DC interactions and subsequent tumor Ag acquisition by DCs, and suggest that FasL-expressing tumor cells could be used to generate tumor-specific DC vaccines.  相似文献   

19.
Fas ligand (FasL) mediates both apoptotic and inflammatory responses in the immune system. FasL function critically depends on the different forms of FasL; soluble Fas ligand lacking the transmembrane and cytoplasmic domains is a poor mediator of apoptosis, whereas full-length, membrane-associated FasL (mFasL) is pro-apoptotic. mFasL can be released from T lymphocytes, via the secretion of mFasL-bearing exosomes. mFasL in exosomes retains its activity in triggering Fas-dependent apoptosis, providing an alternative mechanism of cell death that does not necessarily imply cell-to-cell contact. Diacylglycerol kinase alpha (DGKalpha), a diacylglycerol (DAG)-consuming enzyme, is involved in the attenuation of DAG-derived responses initiated at the plasma membrane that lead to T lymphocyte activation. Here we studied the role of DGKalpha on activation-induced cell death on a T cell line and primary T lymphoblasts. The inhibition of DGKalpha increases the secretion of lethal exosomes bearing mFas ligand and subsequent apoptosis. On the contrary, the overactivation of the DGKalpha pathway inhibits exosome secretion and subsequent apoptosis. DGKalpha was found associated with the trans-Golgi network and late endosomal compartments. Our results support the hypothesis that the DGKalpha effect on apoptosis occurs via the regulation of the release of lethal exosomes by the exocytic pathway, and point out that the spatial orchestration of the different pools of DAG (plasma membrane and Golgi membranes) by DGKalpha is crucial for the control of cell activation and also for the regulation of the secretion of lethal exosomes, which in turn controls cell death.  相似文献   

20.
Activation-induced cell death (AICD) plays a pivotal role in self-tolerance by deleting autoreactive T cells, but a defect of AICD results in expansion of autoreactive T cells and is deeply involved in the pathogenesis of rheumatoid arthritis. Although the process of AICD is mainly mediated by Fas Ligand (FasL)/Fas signaling, it remains unclear what induces FasL expression on T cells. In the present study, we found that CD44 was the most potent stimulator of FasL expression on human peripheral T cells. CD44 cross-linking rapidly up-regulated FasL expression on the T cell surface by delivery from the cytoplasm without new FasL protein synthesis. This up-regulation of FasL was mediated by activation of a tyrosine kinase, IP3 receptor-dependent Ca2+ mobilization and actin cytoskeletal rearrangements. Furthermore, AICD induced by CD3 restimulation was inhibited by hyaluronidase as well as by soluble Fas, indicating an interaction between membrane-bound hyaluronan and the cell surface CD44 was involved in the up-regulation of FasL expression on T cells and subsequent AICD. We therefore propose that the engagement of CD44 on T cells can eliminate autoreactive T cells by expression of FasL and FasL-mediated AICD. Grant support: Scientific Research by the Ministry of Health, Labor and Welfare of Japan, the Ministry of Education, Culture, Sports, Science and Technology of Japan and University of Occupational and Environmental Health, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号