首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
During the last decade not only multicolor fluorescence in situ hybridization (FISH) using whole chromosome paints as probes, but also numerous chromosome banding techniques based on FISH have been developed for the human and for the murine genome. This review focuses on such FISH-banding techniques, which were recently defined as 'any kind of FISH technique, which provide the possibility to characterize simultaneously several chromosomal subregions smaller than a chromosome arm. FISH-banding methods fitting that definition may have quite different characteristics, but share the ability to produce a DNA-specific chromosomal banding'. While the standard chromosome banding techniques like GTG lead to a protein-related black and white banding pattern, FISH-banding techniques are DNA-specific, more colorful and, thus, more informative. For some, even high-resolution FISH-banding techniques the development is complete and they can be used for whole genome hybridizations in one step. Other FISH-banding methods are only available for selected chromosomes and/or are still under development. FISH-banding methods have successfully been applied in research in evolution- and radiation-biology, as well as in studies on the nuclear architecture. Moreover, their suitability for diagnostic purposes has been proven in prenatal, postnatal and tumor cytogenetics, indicating that they are an important tool with the potential to partly replace the conventional banding techniques in the future.  相似文献   

3.
Fluorescence in situ hybridization (FISH) provides one of the most effective and rapid approaches for assigning and ordering DNA fragments within single eukaryotic chromosome bands. These techniques have wide applications not only for the mapping of the human genome and the genomes of other organisms, but also in clinical cytogenetics, somatic cell genetics, cancer diagnosis and gene expression studies.  相似文献   

4.
Endometriosis affects 10–15% of women of reproductive age and is a common cause of infertility and pelvic pain. Although endometriosis is characterized by abnormal growth or turn-over of cells, the genetic changes involved remain unclear. We employed a multi-color fluorescence in situ hybridization (FISH) strategy to determine the incidence of somatic chromosomal numeric alterations in severe/late stage endometriosis. Using alpha-satellite sequence-specific DNA probes for chromosomes 7, 8, 11, 12, 16, 17, and 18, simultaneous two- and three-color FISH were performed to evaluate the frequency of monosomic, disomic, and trisomic cells in normal control and endometriotic tissue specimens. In one of four endometriosis samples studied, a significantly higher frequency of monosomy for chromosome 17 (14.8%, χ2 4 = 53.3, P < 0.0001) and 16 (8.8%, χ2 4 = 11.4, P < 0.05) was observed. An increased number of cells with chromosome 11 trisomy (14.8%, χ2 4 = 96.2, P < 0.0001) were detected in a second case. In a third case, a distinct colony of nuclei with chromosome 16 monosomy (14.1%, χ2 4 = 21.39, P < 0.005) was detected. Acquired chromosome-specific aneuploidy may be involved in endometriosis, reflecting clonal expansion of chromosomally abnormal cells. That candidate tumor suppressor genes and oncogenes have been mapped to chromosomes 11, 16, and 17 suggests that chromosomal loss or gain plays a role in the development and/or progression of endometriosis. Received: 27 December 1997 / Accepted: 14 April 1997  相似文献   

5.
The fluorescence in situ hybridization (FISH) technique with whole chromosome painting for chromosomes #1 and #4 was used to study the impact of air pollution containing higher concentrations of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) in three European cities, Prague (Czech Republic), Kosice (Slovakia) and Sofia (Bulgaria). In each site were followed an exposed group, who were police officers or bus drivers who work usually through busy streets for at least 8 h, and a reference group, who spent more than 90% of their daily time indoors.

In Prague, a significant increase was observed in percentage of aberrant cells (% AB.C.) in the police officers compared to the reference group (0.33 ± 0.25 versus 0.24 ± 0.18, p < 0.05). In Kosice, the exposed group differed from reference in the endpoints FG/100 1.52 ± 1.18 versus 1.12 ± 1.30, p < 0.05; % AB.C. 0.30 ± 0.19 versus 0.21 ± 0.20, p < 0.05; t/1000 3.91 ± 3.18 versus 2.84 ± 3.10, p < 0.05. In Sofia were followed two exposed groups: police officers and bus drivers. All FISH endpoints were significantly higher in police officers compared to reference group (FG/100 1.60 ± 0.99 versus 0.82 ± 0.79, p < 0.01; % AB.C. 0.25 ± 0.14 versus 0.13 ± 0.13, p < 0.01; t/1000 4.19 ± 2.65 versus 2.13 ± 2.05, p < 0.05; rcp 1.46 ± 1.07 versus 0.70 ± 0.76, p < 0.05). In bus drivers compared to reference there was an increase in % AB.C. (0.25 ± 0.18 versus 0.13 ± 0.13, p < 0.05).

This is the first study when FISH method was used to analyze the impact of environmental air pollution. According to the original hypothesis it is expected that the most important group of chemicals responsible for the biological activity of air pollution represent c-PAHs.  相似文献   


6.
7.
Five cases with small supernumerary ring chromosomes are characterized at the molecular level. Routine chromosome banding analysis was insufficient for identification of the ring chromosomes, and none of them was DA/DAPI positive. Fluorescence in situ hybridization utilizing repetitive centromeric probes for all chromosomes has determined that one of these five ring chromosomes originates in each of chromosomes 4, 7, 8, 9, and 20. Chromosome painting with chromosome-specific libraries has confirmed this and excluded the involvement of additional chromosomes in the rearrangements.  相似文献   

8.
This report is a retrospective study of preimplantation embryos diagnosed with monosomy for chromosomes 13, 15, 16, 18, 21, 22, X and Y on day 3 to determine the rate of true positives, false positives and/or mosaicism and to assess if these embryos are suitable for in vitro fertilization (IVF) transfer. In a one year period, 80 patients went through preimplantation genetic diagnosis for aneuploidy screening (PGD-AS). Monosomy was diagnosed in 51 embryos. Fluorescence in situ hybridization (FISH) was then performed on the blastomeres at day 5-7 with commercially available probes using the same probe set that initially identified monosomy for chromosomes 13, 16, 21 and 22 or chromosomes 15, 18, X and Y. Based on FISH analysis, the monosomy diagnosed during routine PGD-AS analysis was confirmed in 17 of the 51 embryos. A euploid result for the specific chromosomes tested was observed in 16 of the 51 embryos while mosaicism was found in the remaining 18 embryos. This results in an estimated false positive rate of 3.8% for a diagnosis of monosomy. Reanalysis of these embryos demonstrates that the majority of monosomy diagnoses represents true monosomy or mosaicism and should be excluded for transfer in IVF. Furthermore, improved understanding from recent emerging data regarding the fate of oocytes in women with advanced maternal age undergoing IVF to the development of early embryos may provide a valuable insight into the mechanism of chromosome mosaicism.  相似文献   

9.
Lee JH  Park JH  Lee SH  Park CS  Jin DI 《Theriogenology》2004,62(8):1452-1458
Fluorescence in situ hybridization (FISH) is a sensitive technique for molecular diagnosis of chromosomes on single cells and can be applied to sex determination of embryos. The objective has been to develop an accurate and reliable bovine Y chromosome-specific DNA probe in order to sex biopsed blastomeres derived from IVF bovine embryos by FISH. Bovine Y chromosome-specific PCR product derived from BtY2 sequences was labeled with biotin-16-dUTP (BtY2-L1 probe), and FISH was performed on karyoplasts of biopsed blastomeres and matched demi-embryos. Our FISH signal was clearly detected in nuclei of blastomeres of male embryos. FISH analysis of bovine embryos gave high reliability (96%) between biopsied blastomeres and matched demi-embryos. These results indicated that the BtY2-L1 bovine Y chromosome-specific FISH probe was an effective probe for bovine embryo sexing, and the FISH technique of probe detection could improve the efficiency and reliability.  相似文献   

10.
The development of the gut is controlled and modulated by different interacting mechanisms such as, genetic endowment, intrinsic biological regulatory functions, environment influences and last but no least, the diet influence. Considered together with other endogenous and exogenous factors the type of feeding may interfere greatly in the regulation of the intestinal microbiota. During the last years molecular methods offer a complementarity to the classic culture-based knowledge. FISH has been applied for molecular evaluation of the microbiota in newborns delivered by vaginal delivery. Eleven probes/probe combinations for specific groups of faecal bacteria were used to determine the bacterial composition in faecal samples of newborns infants under different types of feeding. Breast-fed infants harbor a fecal microbiota by more than two times increased in numbers of Bifidobacterium cells when compared to formula-fed infants. After formula-feeding, Atopobium was found in significant counts and the numbers of Bifidobacterium dropped followed by increasing numbers in Bacteroides population. Moreover, under formula feeding the infants microbiota was more diverse.  相似文献   

11.
The sericulture industry plays a very important role in our national economy. Silkworm (Bombyx mori) is always regarded as a model animal and biological reactor. There have been detailed studies on the structure, expression and control and molecular evolution of silk genes. However, few, if any, reports are available on the localization of structural genes in silkworm by molecular cytogenetics. The present experiment has tentatively localized the Fib-H gene at the distal end of the 25th linkage group, namely at the 25-0.0 position, and verified that Fib-H has only one locus, thus providing a temporary solution to the problem about its localization.  相似文献   

12.
There is much interest in the gene content of the small heterochromatic W chromosome of the chicken, on the supposition that it may contain sex-determining genes. A considerable region in the chicken genome has been assigned to the W chromosome on the basis of its repetitive sequences. Using fluorescent in situ hybridization (FISH) we localized five Bacterial Artificial Chromosomes (BACs) onto female chicken metaphase spreads. We physically mapped these BACs to the Z chromosome. The chicken genome database, however, assigned all five BACs to the W chromosome. Our results demonstrate that the 17 genes on these BACs are Z-specific, and points to the inadequacy of assigning regions of the genome based exclusively on repetitive sequences.  相似文献   

13.
The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization (FISH) procedure, the melting temperature is used as a reference, together with corrections for certain compounds that are used during FISH. However, the quantitative relation between melting and experimental FISH temperatures is poorly described. In this review, various models used to predict the melting temperature for rRNA targets, for DNA oligonucleotides and for nucleic acid mimics (chemically modified oligonucleotides), will be addressed in detail, together with a critical assessment of how this information should be used in FISH.  相似文献   

14.
In planta detection of mutualistic, endophytic, and pathogenic fungi commonly colonizing roots and other plant organs is not a routine task. We aimed to use fluorescence in situ hybridization (FISH) for simultaneous specific detection of different fungi colonizing the same tissue. We have adapted ribosomal RNA (rRNA) FISH for visualization of common mycorrhizal (arbuscular- and ectomycorrhiza) and endophytic fungi within roots of different plant species. Beside general probes, we designed and used specific ones hybridizing to the large subunit of rRNA with fluorescent dyes chosen to avoid or reduce the interference with the autofluorescence of plant tissues. We report here an optimized efficient protocol of rRNA FISH and the use of both epifluorescence and confocal laser scanning microscopy for simultaneous specific differential detection of those fungi colonizing the same root. The method could be applied for the characterization of other plant–fungal interactions, too. In planta FISH with specific probes labeled with appropriate fluorescent dyes could be used not only in basic research but to detect plant colonizing pathogenic fungi in their latent life-period.  相似文献   

15.
Image and multifactorial statistical analyses were used to evaluate the intensity of fluorescence signal from cells of three strains of A. pullulans and one strain of Rhodosporidium toruloides, as an outgroup, hybridized with either a universal or an A. pullulans 18S rRNA oligonucleotide probe in direct or indirect FISH reactions. In general, type of fixation (paraformaldehyde or methanol-acetic acid) had no apparent effect on cell integrity and minimal impact on fluorescence. Permeabilization by enzyme treatment for various times, though needed to admit high Mw detection reagents (avidin-FITC) in indirect FISH, tended to nonspecifically degrade cells and lower the signal. Digestion was unnecessary and undesirable for the directly labelled probes. Multilabelled (five fluorescein molecules) probes enhanced fluorescence about fourfold over unilabelled probes. Overall, direct FISH was preferable to indirect FISH and is recommended especially for studies of microbes on natural substrata.  相似文献   

16.

Background

Our current understanding of biofilms indicates that these structures are typically composed of many different microbial species. However, the lack of reliable techniques for the discrimination of each population has meant that studies focusing on multi-species biofilms are scarce and typically generate qualitative rather than quantitative data.

Methodology/Principal Findings

We employ peptide nucleic acid fluorescence in situ hybridization (PNA FISH) methods to quantify and visualize mixed biofilm populations. As a case study, we present the characterization of Salmonella enterica/Listeria monocytogenes/Escherichia coli single, dual and tri-species biofilms in seven different support materials. Ex-situ, we were able to monitor quantitatively the populations of ∼56 mixed species biofilms up to 48 h, regardless of the support material. In situ, a correct quantification remained more elusive, but a qualitative understanding of biofilm structure and composition is clearly possible by confocal laser scanning microscopy (CLSM) at least up to 192 h. Combining the data obtained from PNA FISH/CLSM with data from other established techniques and from calculated microbial parameters, we were able to develop a model for this tri-species biofilm. The higher growth rate and exopolymer production ability of E. coli probably led this microorganism to outcompete the other two [average cell numbers (cells/cm2) for 48 h biofilm: E. coli 2,1×108 (±2,4×107); L. monocytogenes 6,8×107 (±9,4×106); and S. enterica 1,4×106 (±4,1×105)]. This overgrowth was confirmed by CSLM, with two well-defined layers being easily identified: the top one with E. coli, and the bottom one with mixed regions of L. monocytogenes and S. enterica.

Significance

While PNA FISH has been described previously for the qualitative study of biofilm populations, the present investigation demonstrates that it can also be used for the accurate quantification and spatial distribution of species in polymicrobial communities. Thus, it facilitates the understanding of interspecies interactions and how these are affected by changes in the surrounding environment.  相似文献   

17.
As a technique allowing simultaneous visualization, identification, enumeration and localization of individual microbial cells, fluorescence in situ hybridization (FISH) is useful for many applications in all fields of microbiology. FISH not only allows the detection of culturable microorganisms, but also of yet-to-be cultured (so-called unculturable) organisms, and can therefore help in understanding complex microbial communities. In this review, methodological aspects, as well as problems and pitfalls of FISH are discussed in an examination of past, present and future applications.  相似文献   

18.
Native bacteria, Pseudomonas and filamentous bacteria were quantified and localized on wheat roots grown in the field using fluorescence in situ hybridization (FISH). Seminal roots were sampled through the season from unploughed soil in a conservation farming system. Such soils are spatially heterogeneous, and many roots grow slowly through hard soil with cracks and pores containing dead roots remnant from previous crops. Root and rhizosphere morphology, and contact with soil particles were preserved, and autofluorescence was avoided by observing sections in the far-red with Cy5 and Cy5.5 fluorochromes. Spatial analyses showed that bacteria were embedded in a stable matrix (biofilm) within 11 microm of the root surface (range 2-30 microm) and were clustered on 40% of roots. Half the clusters co-located with axial grooves between epidermal cells, soil particles, cap cells or root hairs; the other half were not associated with visible features. Across all wheat roots, although variable, bacteria averaged 15.4 x 10(5) cells per mm(3) rhizosphere, and of these, Pseudomonas and filaments comprised 10% and 4%, respectively, with minor effects of sample time, and no effect of plant age. Root caps were most heavily colonized by bacteria along roots, and elongation zones least heavily colonized. Pseudomonas varied little with root development and were 17% of bacteria on the elongation zone. Filamentous bacteria were not found on the elongation zone. The most significant factor to rhizosphere populations along a wheat root, however, was contact with dead root remnants, where Pseudomonas were reduced but filaments increased to 57% of bacteria (P < 0.001). This corresponded with analyses of root remnants showing they were heavily colonized by bacteria, with 48% filaments (P < 0.001) and 1.4%Pseudomonas (P = 0.014). Efforts to manage rhizosphere bacteria for sustainable agricultural systems should continue to focus on root cap and mucilage chemistry, and remnant roots as sources of beneficial bacteria.  相似文献   

19.
Herein we report the results of the first major prospective study directly comparing aneuploidy detection by fluorescence in situ hybridization of interphase nuclei with the results obtained by cytogenetic analysis. We constructed probes derived from specific subregions of human chromosomes 21, 18, 13, X, and Y that give a single copy-like signal when used in conjunction with suppression hybridization. A total of 526 independent amniotic fluid samples were analyzed in a blind fashion. All five probes were analyzed on 117 samples, while subsets of these five probes were used on the remaining samples (because of insufficient sample size), for a total of over 900 autosomal hybridization reactions and over 400 sex chromosome hybridization reactions. In this blind series, 21 of 21 abnormal samples were correctly identified. The remaining samples were correctly classified as disomic for these five chromosomes. The combination of chromosome-specific probe sets composed primarily of cosmid contigs and optimized hybridization/detection allowed accurate chromosome enumeration in uncultured human amniotic fluid cells, consistent with the results obtained by traditional cytogenetic analysis.  相似文献   

20.
Interphase cytogenetics by fluorescence in situ hybridization (FISH) can be used to detect malignant cells characterized by chromosomal aneuploidy. However, apparent aneusomy in normal "control" tissues has to be considered when using FISH as diagnostic tool. In effusions as model tissue exposed to metastasis, the definition of cut-off levels for background aneusomy by FISH was aimed in this study. Using centromeric probes representing chromosomes 7, 8, 11, 12, 17 and 18, extensive chromosome copy number enumeration by single-color FISH analysis was performed in pleural and ascitic effusions derived from 15 patients with various, non-malignant diseases. In all effusions, cells with gain of hybridization signals for several or all chromosomes tested were found (in up to 1.94% of cells). A consistent finding was high grade hyperdiploidy (>4 centromeric signals). Mesothelial elements mainly contributed to hyperdiploidy in effusions, as demonstrated by a combined analysis of FISH and immunocytochemistry with staining for cytokeratin. Dual-color FISH analysis showed that hyperdiploidy was predominantly corresponding to polyploidization; however, there were always minor cell populations classified as aneuploid by dual-color FISH. In conclusion, stringent criteria have to be applied to distinguish malignancy-related aneuploidy from background aneusomy by FISH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号