首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The interaction of DNA and RNA with Cu(II), Mg(II), [Co(NH3)6]3+ [Co(NH3)5Cl]2+ chlorides and, cis- and trans-Pt(NH3)2Cl2 (CIS-DDP, trans-DDP) has been studied by Fourier Transform Infrared (FT-IR) spectroscopy and a correlation between metal-base binding and conformational transitions in the sugar pucker has been established. It has been found that RNA did not change from A-form on complexation with metals, whereas DNA exhibited a B to Z transition. The marker bands for the A-form (C′3-endo-anti conformation) were found to be near 810–816 cm?1, while the bands at 825 and 690 cm?1 are marker bands for the B- conformation (C′2-endo, anti), The B to Z (C3-endo, syn conformation) transition is characterized by the shift of the band at 825 cm?1 to 810–816 cm?1 and the shift of the guanine band at 690 cm?1 to about 600–624 cm?1.  相似文献   

2.
Fourier Transform Infrared (FT-IR) spectra of solid samples of DNA and RNA obtained from freeze-drying at solid CO2 and liquid nitrogen temperatures, have been recorded and correlation between the conformational transitions and spectral changes is proposed. It is concluded that an equilibrium exists between A, B and Z conformations at low temperatures for the DNA molecule, which is temperature dependent, whereas the RNA molecule exhibits only the A conformation. The results have been compared with the metal-adducts of DNA and RNA, where one of the conformations is predominant. Marker infrared bands for the B conformer have been found to be the strong band at 825 cm-1 (sugar conformer mode) and a band with medium intensity at 690 cm-1 (guanine breathing mode). The A conformation showed characteristic bands at 810 and 675 cm-1. The B to Z conformational transition was characterized by the strong absorption bands near 820-810 cm-1 and at 665-600 cm-1.  相似文献   

3.
Raman spectroscopic study of left-handed Z-RNA   总被引:3,自引:0,他引:3  
The solvent conditions that induce the formation of a left-handed Z form of poly[r(G-C)] have been extended to include 6.5 M NaBr at 35 degrees C and 3.8 M MgCl2 at room temperature. The analysis of the A----Z transition in RNA by circular dichroism (CD), 1H and 31P NMR, and Raman spectroscopy shows that two distinct forms of left-handed RNA exist. The ZR-RNA structure forms in high concentrations of NaBr and NaClO4 and exhibits a unique CD signature. ZD-RNA is found in concentrated MgCl2 and has a CD signature similar to the Z form of poly[d(G-C)]. The loss of Raman intensity of the 813-cm-1 A-form marker band in both the A----ZR-RNA and A----ZD-RNA transitions parallels the loss of intensity at 835 cm-1 in the B----Z transition of DNA. A guanine vibration that is sensitive to the glycosyl torsion angle shifts from 671 cm-1 in A-RNA to 641 cm-1 in both ZD- and ZR-RNA, similar to the B----Z transition in DNA in which this band shifts from 682 to 625 cm-1. Significant differences in the glycosyl angle and sugar pucker between Z-DNA and Z-RNA are suggested by the 16-cm-1 difference in the position of this band. The Raman evidence for structural difference between ZD- and ZR-RNA comes from two groups of bands: First, Raman intensities between 1180 and 1600 cm-1 of ZD-RNA differ from those for ZR-RNA, corroborating the CD evidence for differences in base-stacking geometry. Second, the phosphodiester stretching bands near 815 cm-1 provide evidence of differences in backbone geometry between ZD- and ZR-RNA.  相似文献   

4.
The interaction of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP) and 2'-deoxyguanosine-5'-monophosphate (5'-dGMP) with the [Co(NH3)6]3+, [Co(NH3)5Cl]2+ and [Co(NH3)4Cl2]+ cations has been investigated in aqueous solution with metal/nucleotide ratios (r) of 1/2, 1 and 2 at neutral pH. The solid complexes have been isolated and characterized by FT-IR and 1H-NMR spectroscopy. The complexes are polymeric in nature both in the crystalline solid and aqueous solution. The binding of the cobalt-hexammine cation is indirectly (via NH3) through the N-7 and the PO3(2-) groups of the AMP and via O-6, N-7 and the PO3(2-) of the GMP and dGMP anions (outer-sphere). The cobalt-pentammine and cobalt-tetrammine bindings are through the phosphate groups (inner-sphere) and the N-7 site (outer-sphere) of these nucleotide anions. The ribose moiety shows C2'-endo/anti conformation, in the free AMP and GMP anions as well as in the cobalt-ammine-AMP complexes, whereas a mixture of teh C2'-endo/anti and C3'-endo/anti sugar puckers were observed for the Co(NH3)6-GMP, Co(NH3)5-GMP and a C3'-endo/anti conformer for the Co(NH3)4-GMP complexes. The deoxyribose showed an O4'-endo/anti conformation for the free dGMP anion and a C3'-endo/anti for the Co(NH3)6-dGMP, Co(NH3)5-dGMP and Co(NH3)4-dGMP complexes.  相似文献   

5.
The Z-DNA crystal structures of d(CGCGTG) and d(CGCGCG) are compared by laser Raman spectroscopy. Raman bands originating from vibrations of the phosphodiester groups and sensitive to the DNA backbone conformation are similar for the two structures, indicating no significant perturbation to the Z-DNA backbone as a result of the incorporation of G.T mismatches. Both Z structures also exhibit Raman markers at 625 and 670 cm-1, assigned respectively to C3'-endo/syn-dG (internal) and C2'-endo/syn-dG conformers (3' terminus). Additional Raman intensity near 620 and 670 cm-1 in the spectrum of the d(CGCGTG) crystal is assigned to C4'-exo/syn-dG conformers at the mismatch sites (penultimate from the 5' terminus). A Raman band at 1680 cm-1, detected only in the d(CGCGTG) crystal, is assigned to the hydrogen-bonded dT residues and is proposed as a definitive marker of the Z-DNA wobble G.T pair. For aqueous solutions, the Raman spectra of d(CGCGTG) and d(CGCGCG) are those of B-DNA, but with significant differences between them. For example, the usual B-form marker band at 832 cm-1 in the spectrum of d(CGCGTG) is about 40% less intense than the corresponding band in the spectrum of d(CGCGCG), and the former structure exhibits a companion band at 864 cm-1 not observed for d(CGCGCG). The simplest interpretation of these results is that the conventional B-form OPO geometry occurs for only 6 of the 10 OPO groups of d(CGCGTG). The remaining four OPO groups, believed to be those at or near the mismatch site, are in an "unusual B" conformation which generates the 864 cm-1 band.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract

Fourier Transform Infrared (FT-IR) spectra of solid samples of DNA and RNA obtained from freeze-drying at solid CO2 and liquid nitrogen temperatures, have been recorded and correlation between the conformational transitions and spectral changes is proposed. It is concluded that an equilibrium exists between A, B and Z conformations at low temperatures for the DNA molecule, which is temperature dependent, whereas the RNA molecule exhibits only the A conformation. The results have been compared with the metal-adducts of DNA and RNA, where one of the conformations is predominant.

Marker infrared bands for the B conformer have been found to be the strong band at 825 cm?1 (sugar conformer mode) and a band with medium intensity at 690 cm?1 (guanine breathing mode). The A conformation showed characteristic bands at 810 and 675 cm?1. The B to Z conformational transition was characterized by the strong absorption bands near 820-810 cm?1 and at 665-600 cm?1.  相似文献   

7.
The (dG)n.(dC)n-containing 34mer DNA duplex [d(A2G15C15T2)]2 can be effectively converted from the B-DNA to the A-DNA conformation by neomycin, spermine and Co(NH3)6(3+). Conversion is demonstrated by a characteristic red shift in the circular dichroism spectra and dramatic NMR spectral changes in chemical shifts. Additional support comes from the substantially stronger CH6/GH8-H3'NOE intensities of the ligand-DNA complexes than those from the native DNA duplex. Such changes are consistent with a deoxyribose pucker transition from the predominate C2'-endo (S-type) to the C3'-endo (N-type). The changes for all three ligand-DNA complexes are identical, suggesting that those three complex cations share common structural motifs for the B- to A-DNA conversion. The A-DNA structure of the 4:1 complex of Co(NH3)6(3+)/d(ACCCGCGGGT) has been analyzed by NOE-restrained refinement. The structural basis of the transition may be related to the closeness of the two negatively charged sugar-phosphate backbones along the major groove in A-DNA, which can be effectively neutralized by the multivalent positively charged amine functions of these ligands. In addition, ligands like spermine or Co(NH3)6(3+) can adhere to guanine bases in the deep major groove of the double helix, as is evident from the significant direct NOE cross-peaks from the protons of Co(NH3)6(3+) to GH8, GH1 (imino) and CH4 (amino) protons. Our results point to future directions in preparing more potent derivatives of Co(NH3)6(3+) for RNA binding or the induction of A-DNA.  相似文献   

8.
Cobalt hexammine [Co(NH3)6(3+)] is an efficient DNA complexing agent which significantly perturbs nucleic acid secondary structure. We have employed red excitation (647.1 nm) from a krypton laser to obtain Raman spectra of the highly colored complexes formed between cobalt hexammine and crystals of the DNA oligomers, d(5BrCGAT5BrCG) and d(CGCGATCGCG), both of which incorporate out-of-alternation pyrimidine/purine sequences. The Co(NH3)6(3+) complex of d(5BrCGAT5BrCG) exhibits a typical Z-form Raman signature, similar to that reported previously for the alternating d(CGCGCG) sequence. Comparison of the Raman bands of d(5BrCGAT5BrCG) with those of other oligonucleotide and polynucleotide structures suggests that C3'-endo/syn and C3'-endo/anti thymidines may exhibit distinctive nucleoside conformation markers, and tentative assignments are proposed. The Raman markers for C2'-endo/anti adenosine in this Z-DNA are consistent with those reported previously for B-DNA crystals containing C2'-endo/anti dA. Raman bands of the cobalt hexammine complex of d(CGCGATCGCG) are those of B-DNA, but with significant differences from the previously characterized B-DNA dodecamer, d(CGCAAATTTGCG). The observed differences suggest an unusual deoxyguanosine conformer, possibly related to a previously characterized structural intermediate in the B-->Z transition. The present results show that crystallization of d(CGCGATCGCG) in the presence of cobalt hexammine is not alone sufficient to induce the left-handed Z-DNA conformation. This investigation represents the first application of off-resonance Raman spectroscopy for characterization of highly chromophoric DNA and illustrates the feasibility of the Raman method for investigating other structurally perturbed states of DNA-cobalt hexammine complexes.  相似文献   

9.
Raman spectroscopy was employed to investigate the temperature-induced B to Z transition of poly(dG-dm5C). The transition midpoint was about 37 degrees C for a solvent containing 20 mM Mg2+. A 10-fold change in Mg2+ concentration altered the transition midpoint by at least 60 degrees C. Raman spectra of the B and Z forms of poly(dG-dm5C) exhibited characteristics similar to those observed with poly(dG-dC). The 682 cm-1 guanine mode and 835 cm-1 backbone mode were present in the B conformation. In the Z form the intensities of these two bands decrease substantially and new peaks were observed at 621 cm-1, 805 and 819 cm-1. Several bands unique to poly(dG-dm5C) were also observed. Transition profiles of band intensity vs. temperature were determined for fourteen Raman bands. The curves of all of the base vibrations and one backbone mode had the same slope and midpoint. This indicates that conformational changes in the guanine and methycytosine bases occur concurrently.  相似文献   

10.
We have measured the temperature-dependent Raman spectra of two 30-mer ribonucleotides that represent the wild-type (WT) and dyskeratosis congenita (DKC) mutant (MT) GC (107-108) --> AG structures of the pseudoknot hairpin region of human telomerase RNA. We have used these structures, previously characterized by UV-melting and NMR, as a model system for our Raman investigation. We observe that Raman hypochromism of vibrational bands, previously assigned to specific bases or conformational RNA markers, reflect temperature-dependent alterations in the pentaloop and stem structures of these two oligonucleotides. We also observe that the intense nu(s)(O-P-O) band at 812 cm(-1) indicates the presence of A-form backbone structure at relatively low temperatures in both the WT and MT RNA sequences. The mutation induces a decrease in the intensity of the uridine (rU) band at 1244 cm(-1) associated with C2'-endo/anti ribose conformation in the pentaloop. Two transition temperatures (T(m) ) were determined from the analysis of Raman difference intensity-temperature profiles of the 1256 cm(-1) band, which is associated with vibrations of cytidine (rC) residues, in particular, the C2'-endo/anti ribose conformation (T(m) 1 = 23.6 +/- 1.6 degrees C for WT and 19.7 +/- 2.8 degrees C for MT; T(m) 2 = 68.9 +/- 1.8 degrees C for WT and 70.9 +/- 1.1 degrees C for MT). From these results we can conclude that the DKC mutant 30-mer exhibits a lower stability in the pentaloop region and a slightly higher stability in the stem region than the WT 30-mer. This demonstrates that Raman bands, previously assigned to specific bases or conformational RNA markers, can be used to probe local structural features of the telomerase pseudoknot hairpin sequence.  相似文献   

11.
Raman spectra of poly(dG-dC) . poly(dG-dC) in D2O solutions of high (4.0M NaCl) and low-salt (0.1M NaCl) exhibit differences due to different nucleotide conformations and secondary structures of Z and B-DNA. Characteristic carbonyl modes in the 1600-1700 cm-1 region also reflect differences in base pair hydrogen bonding of the respective GC complexes. Comparison with A-DNA confirms the uniqueness of C = O stretching frequencies in each of the three DNA secondary structures. Most useful for qualitative identification of B, Z and A-DNA structures are the intense Raman lines of the phosphodiester backbone in the 750-850 cm-1 region. A conformation-sensitive guanine mode, which yields Raman lines near 682, 668, or 625 cm-1 in B (C2'-endo, anti), A (C3'-endo, anti) or Z (C3'-endo, syn) structures, respectively, is the most useful for quantitative analysis. In D2O, the guanine line of Z-DNA is shifted to 615 cm-1, permitting its detection even in the presence of proteins.  相似文献   

12.
Poly d(A-C).poly d(G-T) structures have been studied in solution by Raman spectroscopy, in presence of Na+, Mn2+ and Ni2+ counterions. Increase of the Na+ concentration or addition of Mn2+ ions up to 1M MnCl2 does not modify the B geometry of the polynucleotide. On the contrary, in conditions of low water activity (4M NaCl), the presence of small amounts of nickel ions (65 mM) induces a left-handed geometry of the DNA. The shift of the guanine line located at 682 cm-1 in B form to 622 cm-1 reflects unambiguously the C2'-endo/anti-greater than C3'-endo/syn reorientation of the deoxyribose-purine entities. Moreover modifications in the phosphate backbone lines indicate that the polymer is in a Z conformation. New or displaced lines corresponding to adenosine vibrations are correlated with the left-handed structure. An interaction of the Ni2+ ions specifically with the N7 site of purines, combined with a low water activity is necessary to promote the B-greater than Z transition.  相似文献   

13.
14.
Raman spectra were obtained from single crystals of [d(CGCATGCG)]2 and [d(m5CGTAm5CG)]2, both of which incorporate A-T pairs into Z-DNA structures and contain C2'-endo/syn conformers of deoxyguanosine at the oligonucleotide ends. Correlation with x-ray results permits the following Raman assignments for nucleoside conformers: C3'-endo/syn G, 623 +/- 1; C2'-endo/syn G, 671 +/- 2; C2'-endo/anti C, 782 +/- 1; C2'endo/anti T, 650 +/- 5 and ca. 750; C3'-endo/syn A, 729 +/- 1 cm-1. These results show that (i) the 670 cm-1 line of syn G is highly sensitive to the change from C3'-endo to C2'-endo pucker, (ii) the 729 cm-1 line of A is affected neither by furanose pucker nor glycosidic bond orientation and (iii) the 1200-1500 cm-1 region of the Raman spectrum of the A-T double helix is greatly altered by the B-to-Z transition. Conformation sensitive Raman frequencies in the 850-1700 cm-1 region are identified for both octamer and hexamer, and the Z-to-B transition of each is monitored by spectral changes which occur upon dissolving the crystal in H2O solution.  相似文献   

15.
S P Verma 《Radiation research》1986,107(2):183-193
We have used Raman spectroscopy to study the effects of ionizing radiation on thermal transitions of dipalmitoyl lecithin + polyunsaturated fatty acid liposomes. Raman spectra in the CH (2800-3000 cm-1), C = C (1600-1680 cm-1), and C-C (1000-1150 cm-1) stretching regions are sensitive to ionizing radiation. The CH stretching of acyl chains yields three strong bands around 2850, 2880, and 2930 cm-1. The ratios of the relative intensities of 2880 and 2850 cm-1 bands, i.e., I2880/2850, when plotted against temperature show multiple infection points which correspond to multiple spectroscopic transitions. These are ascribed to a separate phase with distinctive proportions of lecithin and polyunsaturated fatty acids. We find these transitions sensitive to low levels of ionizing radiation. Doses as low as 5-15 rad after 48 h of 60Co gamma irradiation and 60 kVp X irradiation drastically broaden and shift the polyunsaturated rich phase which occurs at lower temperatures (-7 to +5 degrees C) than that of pure dipalmitoyl lecithin (39 degrees C). In addition a new transition around 46 degrees C also emerges upon irradiation (48 h postirradiation). These irradiation effects can be accelerated by the presence of catalytic amounts of Fe2+/EDTA +H2O2. The membrane transition modification is more sensitive to 60 kVp X rays in comparison to 60Co gamma rays owing to the high LET component of the former. The intensity of 1660 cm-1 band, assigned to C = C stretching in the cis-configuration, loses intensity upon irradiation. Concomitantly, a new band around 1675 cm-1, assigned to trans-configuration, emerges. Similarly the increase in the "order parameter" as calculated from the relative intensities of C--C stretching bands indicates rigidification of membrane. Various factors such as reduction in unsaturation, increase in trans-configuration, and the formation of multiple peroxidation products are invoked as lipid phase modifiers.  相似文献   

16.
High resolution NMR data on UNCG and GNRA tetraloops (where N is any of the four nucleotides and R is a purine) have shown that they contain ribonucleosides with unusual 2'-endo/anti and 3'-endo/syn conformations, in addition to the 3'-endo/anti ones which are regularly encountered in RNA chains. In the current study, Raman spectroscopy has been used to probe these nucleoside conformations and follow the order (hairpin) to disorder (random chain) structural transitions in aqueous phase in the 5-80 degreesC temperature range. Spectral evolution of GCAA and GAAA tetraloops, as formed in very short hairpins with only three G.C base pairs in their stems (T m >60 degreesC), are reported and compared with those previously published on UUCG and UACG tetraloops, for which the syn orientation of the terminal guanine as well as the 2'-endo/anti conformation of the third rC residue have been confirmed by means of vibrational marker bands. Raman data obtained as a function of temperature show that the first uracil in the UUCG tetraloop is stacked and the two middle residues (rU and rC) are in the 2'-endo/anti conformation, in agreement with the previously published NMR results. As far as the new data concerning the GNRA type tetraloops are concerned, they lead us to conclude that: (i) in both cases (GCAA and GAAA tetraloops) the adenine bases are stacked; (ii) the second rC residue in the GCAA tetraloop has a 3'-endo/anti conformation; (iii) the sugar pucker associated with the third rA residue in both tetraloops possibly undergoes a 3'-endo/2'-endo interconversion as predicted by NMR results; (iv) the stem adopts a regular A-form structure; (v) all other nucleosides of these two GNRA tetraloops possess the usual 3'-endo/anti conformation.  相似文献   

17.
The RNA binding protein of 56 residues encoded by the extreme 3' region of the gag gene of Rauscher murine leukemia virus (MuLV) has been chemically synthesized by a solid-phase synthesis approach. Since the peptide contains a Cys26-X2-Cys29-X4-His34-X2-Cys39 sequence that is shared by all retroviral gag polyproteins which has been proposed to be a metal binding region, it was of considerable interest to examine the metal binding properties of the complete p10 protein. As postulated, p10 binds the metal ions Cd(II), Co(II), and Zn(II). The Co(II) protein shows a set of d-d absorption bands typical of a tetrahedral Co(II) complex at 695 (epsilon = 565 M-1 cm-1), 642 (epsilon = 655 M-1 cm-1), and 615 nm (epsilon = 510 M-1 cm-1) and two intense bands at 349 (epsilon = 2460 M-1 cm-1) and 314 nm (epsilon = 4240 M-1 cm-1) typical of Co(II)----(-)S- charge transfer. The ultraviolet absorption spectrum also indicates Cd(II) binding by the appearance of a Cd(II)----(-)S- charge-transfer band at 255 nm. The 113Cd NMR spectrum of 113Cd(II)-p10 reveals one signal at delta = 648 ppm. This chemical shift correlates well with that predicted for ligation of 113Cd(II) to three -S- from the three Cys residues of p10. The chemical shift of 113Cd(II)-p10 changes by only 4 ppm upon binding of d(pA)6, indicating that the chelate complex is little changed by oligonucleotide binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Structural conformation of triple-helical poly(dT)-poly(dA)-poly(dT) has been a very controversial issue recently. Earlier investigations, based on fiber diffraction data and molecular modeling, indicated an A-form conformation with C'3-endo sugar pucker. On the other hand, Raman, solution infrared spectral, and NMR studies show a B-form structure with C'2-endo sugars. In accordance with these experimental results, a theoretical model with B-form, C'2-endo sugars was proposed in 1993. In the present work we investigate the dynamics and stability of the two conformations within the effective local field approach applied to the normal mode calculations for the system. The presence of counterions was explicitly taken into account. Stable equilibrium positions for the counterions were calculated by analyzing the normal mode dynamics and free energy of the system. The breathing modes of the triple helix are shifted to higher frequencies over those of the double helix by 4-16 cm-1. The characteristic marker band for the B conformation at 835 cm-1 is split up into two marker bands at 830 and 835 cm-1. A detailed comparison of the normal modes and the free energies indicates that the B-form structure, with C'2-endo sugar pucker, is more stable than the A-form structure. The normal modes and the corresponding dipole moments are found to be in close agreement with recent spectroscopic findings.  相似文献   

19.
The physical properties of a DNA:RNA hybrid sequence d(CCAACGTTGG)*(CCAACGUUGG) with modifications at the C2'-positions of the DNA strand by 2'-O-methyl (OMe) and 2'-S-methyl (SMe) groups are studied using computational techniques. Molecular dynamics simu-lations of SMe_DNA:RNA, OMe_DNA:RNA and standard DNA:RNA hybrids in explicit water indicate that the nature of the C2'-substituent has a significant influence on the macromolecular conformation. While the RNA strand in all duplexes maintains a strong preference for C3'-endo sugar puckering, the DNA strand shows considerable variation in this parameter depending on the nature of the C2'-substituent. In general, the preference for C3'-endo puckering follows the following trend: OMe_DNA>DNA>SMe_DNA. These results are further corroborated using ab initio methods. Both gas phase and implicit solvation calculations show the C2'-OMe group stabilizes the C3'-endo conformation while the less electronegative SMe group stabilizes the C2'-endo conformation when compared to the standard nucleoside. The macromolecular conformation of these nucleic acids also follows an analogous trend with the degree of A-form character decreasing as OMe_DNA:RNA>DNA:RNA>SMe_DNA:RNA. A structural analysis of these complexes is performed and compared with experimental melting point temper-atures to explain the structural basis to improved binding affinity across this series. Finally, a possible correlation between RNase H activity and conformational changes within the minor groove of these complexes is hypothesized.  相似文献   

20.
IR spectra (1600-1800 and 3000-3650 cm-1) of lincomycin base solutions in inert (CCl4 and C2Cl4), proton acceptor (dioxane, dimethylsulfoxide and triethyl amine) and proton donor (CHCl3, CD3OD and D2O) solvents were studied. Analysis of the concentration and temperature changes in the spectra revealed that association in lincomycin in the inert solvents was due to intramolecular hydrogen linkage involving amide and hydroxyl groups. Disintegration of the associates after the solution dilution and temperature rise was accompanied by formation of intramolecular bonds stabilizing the stable conformation structure of the lincomycin molecule. The following hydrogen linkage in the conformation was realized: NH...N (band v NH...N at 3340 cm-1), OH...O involving the hydroxyl at C-7 and O atoms in the D-galactose ring (band v OH...O at 3548 cm-1), a chain of the hydrogen bonds OH...OH...OH in the lincomycin carbohydrate moiety (band v OH...O at 3593 cm-1 and v OH of the end hydroxyl group at 3625 cm-1). Bonds NH and C-O of the amide group were located in transconformation. Group C-O did not participate in the intramolecular hydrogen linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号