首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cadherin engagement regulates Rho family GTPases.   总被引:1,自引:0,他引:1  
The formation of cell-cell adherens junctions is a cadherin-mediated process associated with reorganization of the actin cytoskeleton. Because Rho family GTPases regulate actin dynamics, we investigated whether cadherin-mediated adhesion regulates the activity of RhoA, Rac1, and Cdc42. Confluent epithelial cells were found to have elevated Rac1 and Cdc42 activity but decreased RhoA activity when compared with low density cultures. Using a calcium switch method to manipulate junction assembly, we found that induction of cell-cell junctions increased Rac1 activity, and this was inhibited by E-cadherin function-blocking antibodies. Using the same calcium switch procedure, we found little effect on RhoA activity during the first hour of junction assembly. However, over several hours, RhoA activity significantly decreased. To determine whether these effects are mediated directly through cadherins or indirectly through engagement of other surface proteins downstream from junction assembly, we used a model system in which cadherin engagement is induced without cell-cell contact. For these experiments, Chinese hamster ovary cells expressing C-cadherin were plated on the extracellular domain of C-cadherin immobilized on tissue culture plates. Whereas direct cadherin engagement did not stimulate Cdc42 activity, it strongly inhibited RhoA activity but increased Rac1 activity. Deletion of the C-cadherin cytoplasmic domain abolished these effects.  相似文献   

2.
The Drosophila gene mushroom bodies tiny (mbt) encodes a putative p21-activated kinase (PAK), a family of proteins that has been implicated in a multitude of cellular processes including regulation of the cytoskeleton, cell polarisation, control of MAPK signalling cascades and apoptosis. The mutant phenotype of mbt is characterised by fewer neurones in the brain and the eye, indicating a role of the protein in cell proliferation, differentiation or survival. We show that mutations in mbt interfere with photoreceptor cell morphogenesis. Mbt specifically localises at adherens junctions of the developing photoreceptor cells. A structure-function analysis of the Mbt protein in vitro and in vivo revealed that the Mbt kinase domain and the GTPase binding domain, which specifically interacts with GTP-loaded Cdc42, are important for Mbt function. Besides regulation of kinase activity, another important function of Cdc42 is to recruit Mbt to adherens junctions. We propose a role for Mbt as a downstream effector of Cdc42 in photoreceptor cell morphogenesis.  相似文献   

3.
E-cadherin is a key cell-cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of extracellular signals. To elucidate the mechanism of this endocytosis, we developed here a new cell-free assay system for this reaction using the AJ-enriched fraction from rat liver. We found here that non-trans-interacting, but not trans-interacting, E-cadherin underwent endocytosis in a clathrin-dependent manner. The endocytosis of trans-interacting E-cadherin was inhibited by Rac and Cdc42 small G proteins, which were activated by trans-interacting E-cadherin or trans-interacting nectins, which are known to induce the formation of AJs in cooperation with E-cadherin. This inhibition was mediated by reorganization of the actin cytoskeleton by Rac and Cdc42 through IQGAP1, an actin filament-binding protein and a downstream target of Rac and Cdc42. These results indicate the important role of the Rac/Cdc42-IQGAP1 system in the dynamic organization and maintenance of the E-cadherin-based AJs.  相似文献   

4.
Human endocytic protein ITSN1 regulates actin reorganization by activating Rho family GTPases, such as Cdc42. The process is enhanced by ITSN binding of WASP, an effector of Cdc42 and a potent activator of actin polymerization. In the human pathogen Cryptococcus neoformans, endocytic protein Cin1 also interacts with Cdc42 and Wsp1, an uncharacterized WASP homolog, but the significance of these interactions remains unknown. Wsp1 contains several conserved domains, including a WASP homology 1 domain (WH1), a GTPase binding/Cdc42 and Rac interactive binding domain (GBD/CRIB), and a C-terminal domain composed of verprolin-like, central, and acidic motifs (VCA). Thus, Wsp1 exhibits domain compositions more similar to human WASP proteins than Saccharomyces cerevisiae Las17/Bee1, a WASP homolog lacking the GDB/CRIB domain. Wsp1 is not an essential protein; however, the wsp1 mutant exhibited defects in growth, cytokinesis, chitin distribution, and endocytosis and exocytosis. The wsp1 mutant was also unable to undergo genetic cross, produce the polysaccharide capsule, or secrete the enzyme urease. An in vitro phagocytosis assay showed a higher phagocytic index for the wsp1 mutant, whose ability to cause lethal infection in a murine model of cryptococcosis was also attenuated. Our studies reveal divergent evolution of WASP proteins in the fungal phylum and suggest that the conserved function of WASP proteins in the actin cytoskeleton may also impact fungal virulence.  相似文献   

5.
Nectins, Ca2+-independent immunoglobulin-like cell-cell adhesion molecules, trans-interact and form cell-cell adhesion, which increases the velocities of the formation of the E-cadherin-based adherens junctions (AJs) and the claudin-based tight junctions (TJs) in Madin-Darby canine kidney (MDCK) cells. The trans-interactions of nectins furthermore induce activation of Cdc42 and Rac small G proteins, but the roles of these small G proteins activated in this way remain unknown. We examined here the role and the mode of action of Cdc42 in the organization of AJs and TJs in MDCK cells. We first made the NWASP-Cdc42 and Rac interactive binding (CRIB) domain, an inhibitor of activated Cdc42, fused to the Ki-Ras CAAX motif (NWASP-CRIB-CAAX; where A is aliphatic amino acid), which was targeted to the cell-cell adhesion sites. We then found that overexpression of NWASP-CRIB-CAAX reduced the velocities of the formation of AJs and TJs. Conversely, overexpression of a constitutively active mutant of Cdc42 (V12Cdc42) increased their velocities, and the inhibitory effect of NWASP-CRIB-CAAX was suppressed by co-expression with V12Cdc42. The inhibitory effect of NWASP-CRIB-CAAX on the formation of AJs and TJs was suppressed by co-expression of nectin-1 of which trans-interaction activated endogenous Cdc42. Moreover, the formation of the claudin-based TJs required a greater amount of activated Cdc42 than that of the E-cadherin-based AJs. These results indicate that the Cdc42 activated by the trans-interactions of nectins is involved in the organization of AJs and TJs in different mechanisms in MDCK cells.  相似文献   

6.
Nectins and afadin constitute a novel cell-cell adhesion system that plays a cooperative role with cadherins in the organization of adherens junctions (AJs). Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules, and afadin is a nectin- and actin filament-binding protein that connects nectins to the actin cytoskeleton. Rac and Cdc42 small G proteins have been implicated in the organization of AJs, but their modes of action remain unknown. The trans-interaction of E-cadherin has recently been shown to induce the activation of Rac, but not that of Cdc42. We show here that the trans-interactions of nectins induce the formation of filopodia and lamellipodia through the respective activation of Cdc42 and Rac. The Cdc42 activation is necessary, but not sufficient, for the Rac-induced formation of lamellipodia, whereas the Rac activation is not necessary for the Cdc42-induced formation of filopodia. These effects of nectins require their cytoplasmic tail but not their association with afadin. We propose here the functional relationship between nectins and the small G proteins in the organization of AJs.  相似文献   

7.
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that form homo- and hetero-trans-dimers (trans-interactions). Nectins first form cell-cell contact and then recruit cadherins to the nectin-based cell-cell contact sites to form adherens junctions cooperatively with cadherins. In addition, the trans-interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which enhances the formation of adherens junctions by forming filopodia and lamellipodia, respectively. The trans-interactions of nectins first recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then phosphorylates and activates FRG, a Cdc42-GDP/GTP exchange factor (GEF) for Cdc42. The activation of both c-Src and Cdc42 by FRG is necessary for the activation of Rac, but the Rac-GEF responsible for this activation of Rac remains unknown. We showed here that the nectin-induced activation of Rac was inhibited by a dominant negative mutant of Vav2, a Rac-GEF. Nectins recruited and tyrosine-phosphorylated Vav2 through c-Src at the nectin-based cell-cell contact sites, whereas Cdc42 was not necessary for the nectin-induced recruitment of Vav2 or the nectin-induced, c-Src-mediated tyrosine phosphorylation of Vav2. Cdc42 activated through c-Src then enhanced the GEF activity of tyrosine-phosphorylated Vav2 on Rac1. These results indicate that Vav2 is a GEF responsible for the nectin-induced, c-Src-, and Cdc42-mediated activation of Rac.  相似文献   

8.
IQGAP1 contains a domain related to the catalytic portion of the GTPase-activating proteins (GAPs) for the Ras small G proteins, yet it has no RasGAP activity and binds to the Rho family small G proteins Cdc42 and Rac1. It is thought that IQGAP1 is an effector of Rac1 and Cdc42, regulating cell-cell adhesion through the E-cadherin-catenin complex, which controls formation and maintenance of adherens junctions. This study investigates the binding interfaces of the Rac1-IQGAP1 and Cdc42-IQGAP1 complexes. We mutated Rac1 and Cdc42 and measured the effects of mutations on their affinity for IQGAP1. We have identified similarities and differences in the relative importance of residues used by Rac1 and Cdc42 to bind IQGAP1. Furthermore, the residues involved in the complexes formed with IQGAP1 differ from those formed with other effector proteins and GAPs. Relatively few mutations in switch I of Cdc42 or Rac1 affect IQGAP1 binding; only mutations in residues 32 and 36 significantly decrease affinity for IQGAP1. Switch II mutations also affect binding to IQGAP1 although the effects differ between Rac1 and Cdc42; mutation of either Asp-63, Arg-68, or Leu-70 abrogate Rac1 binding, whereas no switch II mutations affect Cdc42 binding to IQGAP1. The Rho family "insert loop" does not contribute to the binding affinity of Rac1/Cdc42 for IQGAP1. We also present thermodynamic data pertaining to the Rac1/Cdc42-RhoGAP complexes. Switch II contributes a large portion of the total binding energy to these complexes, whereas switch I mutations also affect binding. In addition we identify "cold spots" in the Rac1/Cdc42-RhoGAP/IQGAP1 interfaces. Competition data reveal that the binding sites for IQGAP1 and RhoGAP on the small G proteins overlap only partially. Overall, the data presented here suggest that, despite their 71% identity, Cdc42 and Rac1 appear to have only partially overlapping binding sites on IQGAP1, and each uses different determinants to achieve high affinity binding.  相似文献   

9.
The Rho family GTPases, Cdc42, Rac and Rho, regulate signal transduction pathways via interactions with downstream effector proteins. We report here the solution structure of Cdc42 bound to the GTPase binding domain of alphaPAK, an effector of both Cdc42 and Rac. The structure is compared with those of Cdc42 bound to similar fragments of ACK and WASP, two effector proteins that bind only to Cdc42. The N-termini of all three effector fragments bind in an extended conformation to strand beta2 of Cdc42, and contact helices alpha1 and alpha5. The remaining residues bind to switches I and II of Cdc42, but in a significantly different manner. The structure, together with mutagenesis data, suggests reasons for the specificity of these interactions and provides insight into the mechanism of PAK activation.  相似文献   

10.
In the present study we characterize a novel RhoGAP protein (RC-GAP72) that interacts with actin stress fibers, focal adhesions, and cell-cell adherens junctions via its 185-amino acid C-terminal region. Overexpression of RC-GAP72 in fibroblasts induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. RC-GAP72 mutant truncated downstream of the GTPase-activating protein (GAP) domain retains the ability to stimulate membrane protrusions but fails to affect stress fiber integrity or induce cell retraction. A mutant protein consisting of the C terminus of RC-GAP72 and lacking the GAP domain does not exert any visible effect on cellular morphology. Inactivation of the GAP domain by a point mutation does not abolish the effect of RC-GAP72 on actin stress fibers but moderates its capability to induce membrane protrusions. Our data imply that the cytoskeletal localization of RC-GAP72 and its interaction with GTPases are essential for its effect on the integrity of actin stress fibers, whereas the induction of lamellipodia and filopodia depends on the activity of the GAP domain irrespective of binding to the actin cytoskeleton. We propose that RC-GAP72 affects cellular morphology by targeting activated Cdc42 and Rac1 GTPases to specific subcellular sites, triggering local morphological changes. The overall physiological functions of RC-GAP72 are presently unknown, yet our data suggest that RC-GAP72 plays a role in regulating cell morphology and cytoskeletal organization.  相似文献   

11.
Establishment of cell polarity is important for a wide range of biological processes, from asymmetric cell growth in budding yeast to neurite formation in neurons. In the yeast Saccharomyces cerevisiae, the small GTPase Cdc42 controls polarized actin organization and exocytosis toward the bud. Gic2, a Cdc42 effector, is targeted to the bud tip and plays an important role in early bud formation. The GTP-bound Cdc42 interacts with Gic2 through the Cdc42/Rac interactive binding domain located at the N terminus of Gic2 and activates Gic2 during bud emergence. Here we identify a polybasic region in Gic2 adjacent to the Cdc42/Rac interactive binding domain that directly interacts with phosphatidylinositol 4,5-bisphosphate in the plasma membrane. We demonstrate that this interaction is necessary for the polarized localization of Gic2 to the bud tip and is important for the function of Gic2 in cell polarization. We propose that phosphatidylinositol 4,5-bisphosphate and Cdc42 act in concert to regulate polarized localization and function of Gic2 during polarized cell growth in the budding yeast.  相似文献   

12.
WAVE2 is a member of the WASP/WAVE family of protein effectors of actin reorganization and cell movement. In this report, we demonstrate that WAVE2 overexpression induces serum response element (SRE) activation through serum response factor. A WAVE2 mutant lacking the VCA region did not induce SRE activation and actin polymerization. WAVE2-induced SRE activation was blocked by exposure of cells to Latrunculin A, or overexpression of actin mutant R62D. The DeltaVCA mutant inhibited Rac V12-induced SRE activation, suggesting that WAVE2 lies downstream of Rac. Similar deletion of the VCA domain of WASP attenuated Cdc42 V12-mediated SRE activation, suggesting that WAVE2 acts in relation to Rac as WASP acts in relation to Cdc42. WAVE2 overexpression did not activate NF-kappaB.  相似文献   

13.
The Cdc42 effector IRSp53 is a strong inducer of filopodia formation and consists of an Src homology domain 3 (SH3), a potential WW-binding motif, a partial-Cdc42/Rac interacting binding region motif, and an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain.We show that IRSp53 interacts directly with neuronal Wiskott-Aldrich syndrome protein (N-WASP) via its SH3 domain and furthermore that N-WASP is required for filopodia formation as IRSp53 failed to induce filopodia formation in N-WASP knock-out (KO) fibroblasts. IRSp53-induced filopodia formation can be reconstituted in N-WASP KO fibroblasts by full-length N-WASP, by N-WASPDeltaWA (a mutant unable to activate the Arp2/3 complex), and by N-WASPH208D (a mutant unable to bind Cdc42). IRSp53 failed to induce filopodia in mammalian enabled (Mena)/VASP KO cells, and N-WASP failed to induce filopodia when IRSp53 was knocked down with RNA interference. The IRSp53 I-BAR domain alone induces dynamic membrane protrusions that lack actin and are smaller than normal filopodia ("partial-filopodia") in both wild-type N-WASP and N-WASP KO cells. We propose that IRSp53 generates filopodia by coupling membrane protrusion through its I-BAR domain with actin dynamics through SH3 domain binding partners, including N-WASP and Mena.  相似文献   

14.
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.  相似文献   

15.
The Rho GTPases Rac1 and Cdc42 regulate a variety of cellular functions by signaling to different signal pathways. It is believed that the presence of a specific effector at the location of GTPase activation determines the route of downstream signaling. We previously reported about EGF-induced Ser-71 phosphorylation of Rac1/Cdc42. By using the phosphomimetic S71E-mutants of Rac1 and Cdc42 we investigated the impact of Ser-71 phosphorylation on binding to selected effector proteins. Binding of the constitutively active (Q61L) variants of Rac1 and Cdc42 to their specific interaction partners Sra-1 and N-WASP, respectively, as well as to their common effector protein PAK was abrogated when Ser-71 was exchanged to glutamate as phosphomimetic substitution. Interaction with their common effector proteins IQGAP1/2/3 or MRCK alpha was, however, hardly affected. This ambivalent behaviour was obvious in functional assays. In contrast to Rac1 Q61L, phosphomimetic Rac1 Q61L/S71E was not able to induce increased membrane ruffling. Instead, Rac1 Q61L/S71E allowed filopodia formation, which is in accordance with abrogation of the dominant Sra-1/Wave signalling pathway. In addition, in contrast to Rac1 transfected cells Rac1 S71E failed to activate PAK1/2. On the other hand, Rac1 Q61L/S71E was as effective in activation of NF-kappaB as Rac1 Q61L, illustrating positive signal transduction of phosphorylated Rac1. Together, these data suggest that phosphorylation of Rac1 and Cdc42 at serine-71 represents a reversible mechanism to shift specificity of GTPase/effector coupling, and to preferentially address selected downstream pathways.  相似文献   

16.
Atypical RhoV GTPase (Chp/Wrch-2) is a member of the human Rho GTPase family, which belongs to the superfamily of Ras-related small GTPases. The biological functions of RhoV, regulation of its activity, and mechanisms of its action remain largely unexplored. Rho GTPases regulate a wide range of cellular processes by interacting with protein targets called effectors. Several putative RhoV effectors have been identified, including protein kinases of the Pak (p21-activated kinase) family: Pak1, Pak2, Pak4, and Pak6. RhoV GTPase activates Pak1 protein kinase and simultaneously induces its ubiquitin-dependent degradation. Pak1 regulates E-cadherin localization at adherens junctions downstream of RhoV during gastrulation in fish. The effector domain of RhoV mediates its binding to the CRIB (Cdc42/Rac1 interactive binding) motif in the N-terminal p21-binding domain (PBD) of Pak6 protein kinase. The role of the RhoV effector domain in mediating interaction with Pak1 has not been studied. This study has identified mutations in the effector domain of RhoV GTPase (Y60K, T63A, L65A, and D66A) that impair its interaction with Pak1 in the GST-PAK-PBD pull-down assay and coimmunoprecipitation. Our results suggest that the effector domain of RhoV mediates its binding to Pak1, complementing the current view of the molecular basics of RhoV binding to effectors of the Pak family. These data lay the basis for further studies on the role of Pak1 in RhoV-activated signaling pathways and cellular processes.  相似文献   

17.
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity. epithelium; tight junctions; paracellular permeability; Madin-Darby canine kidney cells  相似文献   

18.
RhoA, Cdc42, and Rac1 are small GTPases that regulate cytoskeletal reorganization leading to changes in cell morphology and cell motility. Their signaling pathways are activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins (GAPs). We have identified a novel RhoGAP, BPGAP1 (for BNIP-2 and Cdc42GAP Homology (BCH) domain-containing, Proline-rich and Cdc42GAP-like protein subtype-1), that is ubiquitously expressed and shares 54% sequence identity to Cdc42GAP/p50RhoGAP. BP-GAP1 selectively enhanced RhoA GTPase activity in vivo although it also interacted strongly with Cdc42 and Rac1. "Pull-down" and co-immunoprecipitation studies indicated that it formed homophilic or heterophilic complexes with other BCH domain-containing proteins. Fluorescence studies of epitope-tagged BPGAP1 revealed that it induced pseudopodia and increased migration of MCF7 cells. Formation of pseudopodia required its BCH and GAP domains but not the proline-rich region, and was differentially inhibited by coexpression of the constitutively active mutant of RhoA, or dominant negative mutants of Cdc42 and Rac1. However, the mutant without the proline-rich region failed to confer any increase in cell migration despite the induction of pseudopodia. Our findings provide evidence that cell morphology changes and migration are coordinated via multiple domains in BPGAP1 and present a novel mode of regulation for cell dynamics by a RhoGAP protein.  相似文献   

19.
20.
The Rho family of GTPases plays key roles in the regulation of cell motility and morphogenesis. They also regulate protein kinase cascades, gene expression, and cell cycle progression. This multiplicity of roles requires that the Rho GTPases interact with a wide variety of downstream effector proteins. An understanding of their functions at a molecular level therefore requires the identification of the entire set of such effectors. Towards this end, we performed a two-hybrid screen using the TC10 GTPase as bait and identified a family of putative effector proteins related to MSE55, a murine stromal and epithelial cell protein of 55 kDa. We have named this family the Borg (binder of Rho GTPases) proteins. Complete open reading frames have been obtained for Borg1 through Borg3. We renamed MSE55 as Borg5. Borg1, Borg2, Borg4, and Borg5 bind both TC10 and Cdc42 in a GTP-dependent manner. Surprisingly, Borg3 bound only to Cdc42. An intact CRIB (Cdc42, Rac interactive binding) domain was required for binding. No interaction of the Borgs with Rac1 or RhoA was detectable. Three-hemagglutinin epitope (HA(3))-tagged Borg3 protein was mostly cytosolic when expressed ectopically in NIH 3T3 cells, with some accumulation in membrane ruffles. The phenotype induced by Borg3 was reminiscent of that caused by an inhibition of Rho function and was reversed by overexpression of Rho. Surprisingly, it was independent of the ability to bind Cdc42. Borg3 also inhibited Jun kinase activity by a mechanism that was independent of Cdc42 binding. HA(3)-Borg3 expression caused substantial delays in the spreading of cells on fibronectin surfaces after replating, and the spread cells lacked stress fibers. We propose that the Borg proteins function as negative regulators of Rho GTPase signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号