首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most species of Fusarium that produce fumonisin mycotoxins produce predominantly B fumonisins (FBs). However, Fusarium oxysporum strain O-1890 produces predominantly C fumonisins (FCs). In this study, the nucleotide sequence of the fumonisin biosynthetic gene (FUM) cluster in strain O-1890 was determined. The order and orientation of FUM genes were the same as in the previously described clusters in Fusarium verticillioides and Fusarium proliferatum. Coding regions of F. oxysporum and F. verticillioides FUM genes were 88-92% identical, but regions flanking the clusters did not share significant identity. The FUM cluster gene FUM8 encodes an alpha-oxoamine synthase, and fum8 mutants of F. verticillioides do not produce fumonisins. Complementation of a fum8 mutant with the F. verticillioidesFUM8 restored FB production. Complementation with F. oxysporumFUM8 also restored production, but the fumonisins produced were predominantly FCs. These data indicate that different orthologues of FUM8 determine whether Fusarium produces predominantly FBs or FCs.  相似文献   

2.
Fumonisins are mycotoxins that cause several fatal animal diseases, including cancer in rats and mice. These toxins are produced by several Fusarium species, including the maize pathogen Fusarium verticillioides, and can accumulate in maize infected with the fungus. We have identified four F. verticillioides genes (FUM6, FUM7, FUM8, and FUM9) adjacent to FUM5, a previously identified polyketide synthase gene that is required for fumonisin biosynthesis. Gene disruption analysis revealed that FUM6 and FUM8 are required for fumonisin production and Northern blot analysis revealed that expression of all four recently identified genes is correlated with fumonisin production. Nucleotide sequence analysis indicated that the predicted FUM6 translation product is most similar to cytochrome P450 monooxygenase-P450 reductase fusion proteins and the predicted products of FUM7, FUM8, and FUM9 are most similar to type III alcohol dehydrogenases, class-II alpha-aminotransferases, and dioxygenases, respectively. Together, these data are consistent with FUM5 through FUM9 being part of a fumonisin biosynthetic gene cluster in F. verticillioides.  相似文献   

3.
Fusarium verticillioides produces a group of mycotoxins known as fumonisins that are associated with a variety of mycotoxicoses in humans and animals. In this study, DNA microarrays were constructed with expressed sequence tags (ESTs) from F. verticillioides. To identify genes with patterns of expression similar to the fumonisin biosynthetic (FUM) genes, the microarray was probed with labeled cDNAs originating from a wild-type strain and a fcc1 mutant grown on maize and in a defined medium adjusted to either pH 3 or pH 8. The comparative analyses revealed differential expression of genes corresponding to 116 ESTs when the fungal strains were grown on maize. Under different pH conditions, 166 ESTs were differentially expressed, and 19 ESTs were identified that displayed expression patterns similar to the FUM ESTs. These results provide candidate genes with potential roles in fumonisin biosynthesis.  相似文献   

4.
Fumonisins are mycotoxins produced by the maize pathogen Gibberella moniliformis and are associated with cancer in rodents. In this study, we determined the nucleotide sequence of a 75-kb region of G. moniliformis DNA and identified 18 heretofore undescribed genes flanking a cluster of five previously identified fumonisin biosynthetic (FUM) genes. Ten of the newly identified genes downstream of the cluster were coregulated with FUM genes and exhibited patterns of expression that were correlated with fumonisin production. BLASTX analyses indicated that the predicted functions of proteins encoded by the 10 genes were consistent with activities expected for fumonisin biosynthesis or self-protection. These data indicate that the 10 newly identified genes and the previously identified FUM genes constitute a fumonisin biosynthetic gene cluster. Disruption of two of the new genes, encoding longevity assurance factors, had no apparent effect on fumonisin production, but disruption of a third, encoding an ABC transporter, had a subtle effect on ratios of fumonisins produced.  相似文献   

5.
In order to evaluate the toxicological and carcinogenic effects of fumonisins, large amounts of fumonisins need to be purified, which requires optimal conditions for production in culture. Five strains of F. verticillioides were compared for their ability to produce fumonisins in solid and liquid media with and without the addition of methionine, a fumonisin precursor. Inoculations were made either with lyophilized cultures or a concentrated inoculum. Growth in liquid medium, measured by biomass, was directly correlated to total fumonisin production when a lyophilized inoculum was used. Fumonisin production was stimulated by the addition of 0.2% L-methionine to solid media for most strains. Levels ranged from 1500-3900 mg/kg in rice, and 2900-12500 mg/kg in maize cultures inoculated with lyophilized cultures; 200-4800 mg/kg in rice, and 1500-4200 mg/kg in maize cultures inoculated with concentrated inoculum. Strains that produced relatively high levels of fumonisins in solid media did not necessarily do so in liquid medium and vice versa. Total fumonisin levels in liquid medium ranged from 40-590 mg/l inoculated with lyophilized cultures and < 1-110 mg/l inoculated with concentrated inoculum, without adding the precursor. F. verticillioides strains therefore varied in their ability to produce fumonisins, and conditions for production need to be optimized individually for each strain.  相似文献   

6.
7.
We have analyzed the role of fumonisins in infection of maize (Zea mays) by Gibberella moniliformis (anamorph Fusarium verticillioides) in field tests in Illinois and Iowa, United States. Fumonisin-nonproducing mutants were obtained by disrupting FUM1 (previously FUM5), the gene encoding a polyketide synthase required for fumonisin biosynthesis. Maize ear rot, ear infection, and fumonisin contamination were assessed by silk-channel injection in 1999 and 2000 and also by spray application onto maize silks, injection into maize stalks, and application with maize seeds at planting in 1999. Ear rot was evaluated by visual assessment of whole ears and by calculating percentage of symptomatic kernels by weight. Fumonisin levels in kernels were determined by high-performance liquid chromatography. The presence of applied strains in kernels was determined by analysis of recovered isolates for genetic markers and fumonisin production. Two independent fumonisin-nonproducing (fum1-3 and fum1-4) mutants were similar to their respective fumonisin-producing (FUM1-1) progenitor strains in ability to cause ear rot following silk-channel injection and also were similar in ability to infect maize ears following application by all four methods tested. This evidence confirms that fumonisins are not required for G. moniliformis to cause maize ear rot and ear infection.  相似文献   

8.
9.
Fumonisins are polyketide-derived mycotoxins, produced by several Fusarium species, and its biosynthetic pathway is controlled by the FUM cluster--a group of genes exhibiting a common expression pattern during fumonisin biosynthesis. The most common are the B analogues with fumonisin B(1) (FB(1)) being the most prevalent. At least a part of the inter- and intraspecific variation in FBs synthesis level can be explained by the sequence differences inside FUM cluster. The aim of our study was to evaluate the toxin production and sequence variability in FUM genes and intergenic regions among thirty isolates of seven species reported as potential fumonisins producers: Fusarium anthophilum, Fusarium fujikuroi, Fusarium nygamai, Fusarium oxysporum, Fusarium proliferatum, Fusarium subglutinans and Fusarium verticillioides, particularly with respect to FBs synthesis. Fumonisins were produced in high amounts (over 1mg g(-1)) by one isolate of F. subglutinans, three of F. verticillioides and all F. proliferatum isolates except one, regardless of the host organism. The remaining isolates produced low amounts of FBs and two F. verticillioides isolates didn't produce it at all. The lowest variation in amount of toxin produced was found among F. proliferatum isolates. Based on the translation elongation factor 1α (tef-1α) sequence of F. fujikuroi, a species-specific marker was developed. The intergenic region presents similar opportunity for F. nygamai identification. The phylogenetic reconstruction based on FUM1 gene generally reflects the scenario presented by tef-1α sequences. Although the sequence similarities for intergenic regions were lower than in coding regions, there are clearly conserved patterns enabling separation of different subsets of species, including the non-producer species.  相似文献   

10.
Fumonisins are toxins associated with several mycotoxicoses and are produced by the maize pathogen Gibberella fujikuroi mating population A (MP-A). Biochemical analyses indicate that fumonisins are a product of either polyketide or fatty acid biosynthesis. To isolate a putative polyketide synthase (PKS) gene involved in fumonisin biosynthesis, we employed PCR with degenerate PKS primers and a cDNA template prepared from a fumonisin-producing culture of G. fujikuroi. Sequence analysis of the single PCR product and its flanking DNA revealed a gene (FUM5) with a 7.8-kb coding region. The predicted FUM5 translation product was highly similar to bacterial and fungal Type I PKSs. Transformation of a cosmid clone carrying FUM5 into G. fujikuroi enhanced production in three strains and restored wild-type production in a fumonisin nonproducing mutant. Disruption of FUM5 reduced fumonisin production by over 99% in G. fujikuroi MP-A. Together, these results indicate that FUM5 is a PKS gene required for fumonisin biosynthesis.  相似文献   

11.
Fusarium verticillioides, a fungal pathogen of maize, produces fumonisin mycotoxins that adversely affect human and animal health. Basic questions remain unanswered regarding the interactions between the host plant and the fungus that lead to the accumulation of fumonisins in maize kernels. In this study, we evaluated the role of kernel endosperm composition in regulating fumonisin B1 (FB1) biosynthesis. We found that kernels lacking starch due to physiological immaturity did not accumulate FB1. Quantitative polymerase chain reaction analysis indicated that kernel development also affected the expression of fungal genes involved in FB1 biosynthesis, starch metabolism, and nitrogen regulation. A mutant strain of F. verticillioides with a disrupted a-amylase gene was impaired in its ability to produce FB1 on starchy kernels, and both the wild-type and mutant strains produced significantly less FB1 on a high-amylose kernel mutant of maize. When grown on a defined medium with amylose as the sole carbon source, the wild-type strain produced only trace amounts of FB1, but it produced large amounts of FB1 when grown on amylopectin or dextrin, a product of amylopectin hydrolysis. We conclude that amylopectin induces FB1 production in F. verticillioides. This study provides new insight regarding the interaction between the fungus and maize kernel during pathogenesis and highlights important areas that need further study.  相似文献   

12.
13.
Fumonisins are mycotoxins, produced mainly by Fusarium verticillioides, that are potentially carcinogenic to humans and toxic to animals. Synthesis of these toxins is directed by a cluster of 15 genes, among which FUM1 is the largest; it encodes a polyketide synthase. This enzyme probably catalyzes the synthesis of a polyketide that forms a large portion of the fumonisin structure. In this study, 27 strains possessing the FUM1 gene, as determined by polymerase chain reaction, were analyzed. A portion of the FUM1 gene was amplified and sequenced from 6 of 27 Brazilian strains isolated from corn and sorghum. The sequence similarity for the six F. verticillioides strains was almost 100%.  相似文献   

14.
Maize (Zea mays L.) is susceptible to infection by Fusarium verticillioides through autoinfection and alloinfection, resulting in diseases and contamination of maize kernels with the fumonisin mycotoxins. Attempts at controlling this fungus are currently being done with biocontrol agents such as bacteria, and this includes bacterial endophytes, such as Bacillus mojavensis . In addition to producing fumonisins, which are phytotoxic and mycotoxic, F. verticillioides also produces fusaric acid, which acts both as a phytotoxin and as an antibiotic. The question now is Can B. mojavensis reduce lesion development in maize during the alloinfection process, simulated by internode injection of the fungus? Mutant strains of B. mojavensis that tolerate fusaric acid were used in a growth room study to determine the development of stalk lesions, indicative of maize seedling blight, by co-inoculations with a wild-type strain of F. verticillioides and with non-fusaric acid producing mutants of F. verticillioides. Lesions were measured on 14-day-old maize stalks consisting of treatment groups inoculated with and without mutants and wild-type strains of bacteria and fungi. The results indicate that the fusaric-acid-tolerant B. mojavensis mutant reduced stalk lesions, suggesting an in planta role for this substance as an antibiotic. Further, lesion development occurred in maize infected with F. verticillioides mutants that do not produce fusaric acid, indicating a role for other phytotoxins, such as the fumonisins. Thus, additional pathological components should be examined before strains of B. mojavensis can be identified as being effective as a biocontrol agent, particularly for the control of seedling disease of maize.  相似文献   

15.
16.
17.
The fungus Fusarium verticillioides is a maize pathogen that can produce fumonisin mycotoxins in ears under certain environmental conditions. Because fumonisins pose health risks to humans and livestock, control strategies with minimal risk to the environment are needed to reduce fumonisin contamination. Host-induced gene silencing is a promising technique in which double-stranded RNA expressed in the plant host is absorbed by an invading fungus and down-regulates genes critical for pathogenicity or mycotoxin production in the fungus. A key preliminary step of this technique is identification of DNA segments within the targeted fungal gene that can effectively silence the gene. Here, we used segments of the fumonisin biosynthetic gene FUM1 to generate double-stranded RNA in F. verticillioides. Several of the resulting transformants exhibited reduced FUM1 gene expression and fumonisin production (24- to 3675-fold reduction in fumonisin FB1). Similar reductions in fumonisin production resulted from double-stranded RNA constructs with segments of FUM8, another fumonisin biosynthetic gene (3.5- to 2240-fold reduction in fumonisin FB1). FUM1 or FUM8 silencing constructs were transformed into three isolates of F. verticillioides. Whole genome sequence analysis of seven transformants revealed that reductions in fumonisin production were not due to mutation of the fumonisin biosynthetic gene cluster and revealed a complex pattern of plasmid integration. These results suggest the cloned FUM1 or FUM8 gene segments could be expressed in maize for host-induced gene silencing of fumonisin production.  相似文献   

18.
Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regulating diverse processes important for plant infection in phytopathogenic fungi, in this study we identified and functionally characterized the FvMK1 gene in F. verticillioides. FvMK1 is orthologous to FMK1 in F. oxysporum and GPMK1 in F. graminearum. The Fvmk1 deletion mutant was reduced in vegetative growth and production of microconidia. However, it was normal in sexual reproduction and increased in the production of macroconidia. In infection assays with developing corn kernels, the Fvmk1 mutant was non-pathogenic and failed to colonize through wounding sites. It also failed to cause stalk rot symptoms beyond the inoculation sites on corn stalks, indicating that FvMK1 is essential for plant infection. Furthermore, the Fvmk1 mutant was significantly reduced in fumonisin production and expression levels of FUM1 and FUM8, two genes involved in fumonisin biosynthesis. The defects of the Fvmk1 mutant were fully complemented by re-introducing the wild type FvMK1 allele. These results demonstrate that FvMK1 plays critical roles in the regulation of vegetative growth, asexual reproduction, fumonisin biosynthesis, and pathogenicity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号