首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract— Glutamyl, glutaminyl. aspartyl and asparaginyl tRNAs of calf brain were analysed by reverse phase chromatography for isoacceptor tRNAs. The radioactivity profiles revealed two peaks for gluta-mate. three for glutamine, two for aspartate and one for asparagine. Comparison of brain tRNAs with tRNAs from other sources showed that glutamate and aspartate tRNAs of brain closely resembled a majority of other tRNAs in the number and relative abundance of isoacceptors. Glutamine and asparagine tRNAs from different sources exhibited more marked differences.  相似文献   

3.
Abstract— Glutamate and aspartate probably serve as transmitters of hippocampal perforant path and commissural afferents, respectively. We therefore used slices of hippocampal regions to evaluate certain biochemical properties as markers for sites of transmission mediated by these amino acids. In these studies content and accumulation of glutamate and aspartate were compared with their Ca2+-dependent effluxes.
Hippocampal regions varied little in their contents of glutamate and aspartate, but slices of regio superior and dentate gyrus accumulated and released more of each than slices of regio inferior. A commissurotomy or bilateral entorhinal lesion altered Ca2+-dependent efflux and accumulation in the same direction, but did not affect the glutamate or aspartate content of any hippocampal region. Elimination of hippocampal mossy fibers reduced the Ca2+-dependent efflux of glutamate and probably aspartate from slices of dentate gyrus, but not of regio inferior, where most mossy fiber synapses are located. The mossy fibers appeared relatively deficient in aspartate in both strains tested, but only in Purdue-Wistar rats were they enriched in glutamate. Removal of the perforant path input to the fascia dentata did not significantly change the activity of any of the enzymes most actively involved in glutamate synthesis.
These results suggest that accumulation or high affinity transport of glutamate or aspartate can be employed to localize afferents which use these amino acids as transmitters, although it is not so reliable or selective a marker as Ca2+-dependent efflux. Enrichment in either glutamate or aspartate content or in the activity of enzymes which synthesize them is not a reliable marker. Neither amino acid is likely to be used as a transmitter by the hippocampal mossy fibers.  相似文献   

4.
—[14C]-Glutamate and [14C]-glutamine were incorporated into calf brain tRNA in the presence of homologous aminoacyl-tRNA synthetases. When the tRNAs were then deaminoacylated and chromatographed, a number of radioactive products were found in addition to the original amino acids. One of the products of glutamate transformation was identified to be glutamine. Formation of the radioactive products of glutamate in the presence and absence of tRNA indicated that glutamine was produced from glutamate at the level of the free amino acid followed by the incorporation of both substances into tRNA. Examination of the products of deaminoacylation of glutaminyl-tRNA showed that glutamine underwent structural alterations at the level of the aminoacyl-tRNAs to give rise to a cyclic derivative of glutarimide. This reaction was specific for glutamine, and constituted approximately 15 per cent of the total radioactivity in the deaminoacylation products of glutaminyl-tRNA.  相似文献   

5.
The distribution of glycine, GABA, glutamate and aspartate was measured among about 60 subdivisions of rabbit spinal cord, and among the discrete layers of cerebellum, hippocampus and area dentata. A more detailed mapping for GABA was made within the tip of the dorsal horn of the spinal cord. Spinal ventral horn and dorsal root ganglion cell bodies were analyzed for the amino acids and for total lipid. The distribution of lipid and lipid-free dry weight per unit volume was also determined in spinal cord. Calculated on the basis of tissue water, glycine in the cord is highest in lateral and ventral white matter immediately adjacent to the ventral grey. The distribution of GABA is almost the inverse of that of glycine with highest level in the tip of dorsal horn. It is most highly concentrated in the central 75% of Rexed layers III and IV. Aspartate in the tip of ventral horn is 4-fold higher than in the tip of the dorsal horn and 3 times the average concentration in brain. Glutamate was much more evenly distributed and is relatively low in concentration with slightly higher levels in dorsal than in ventral grey matter. Large cell bodies in both ventral horn and dorsal root ganglion contained high levels of glycine. As reported by others, GABA was found to be high in cerebellar grey layers, area dentata, and regio inferior of hippocampus. Glycine was moderately high in cerebellar layers but moderate to low in hippocampus and area dentata.  相似文献   

6.
Abstract— The distribution of the neuroactive amino acids taurine, GABA, glycine, glutamate and aspartate, together with glutamine, have been studied in the rat retina. Peak levels of taurine were found in photoreceptor cells and of GABA and glycine in a retinal fraction enriched in amacrine cells and, synaptic terminals. In vitro , GABA formation from [3H]glutamine and [14C]glucose was also most prominent in this fraction; at 500 μ m [3H]glutamine was the better precursor.
Observations on metabolism in the photoreceptor cell layer of the tissue suggest an active turnover of glutamate, aspartate and GABA, and show that glutamine may serve as an alternative substrate to glucose here, perhaps via the GABA bypath.  相似文献   

7.
A subconvulsant dose of sodium fluoroacetate inhibited the metabolic utilization of intracerebrally-administered N-acetyl-l -[U-14C]asparticacid and the labelling of glutamine from this precursor in mouse brain, but not the labelling of glutamate or aspartate. A convulsant dose also inhibited the utilization of l -[U-14C]aspartic acid. When intraperitoneal injection of a convulsant dose of sodium fluoroacetate was followed by intracerebral injection of N-acetyl-l -[U-14C]asparticacid, the levels of N-acetylaspartate, aspartate and glutamate in brain were lowered, while the glutamine content was increased. The specific radioactivity of glutamine relative to that of glutamate was much lower when these compounds were labelled from l -[U-14C]aspartic acid than when N-acetyl-l -[U-14C]aspartic acid was used as the precursor. Intracerebral injection of tracer amounts of l -[U-14C]aspartic acid reduced the content of N-acetylaspartate in brain and raised the glutamine content. Sodium fluoroacetate had no additional effect on the relative specific radioactivity of glutamine or the content of N-acetylaspartate, aspartate, glutamate or glutamine when l -[U-14C]aspartic acid was the precursor. We consider the results to be consistent with a selective inhibition both by sodium fluoroacetate and by exogenous aspartic acid of the tricarboxylic acid cycle in brain associated with the biosynthesis of glutamine. We suggest that the activity of this pathway may regulate the metabolism of N-acetylaspartate and aspartate.  相似文献   

8.
Abstract— The effect of increased exposure to ketone bodies in the developing rat brain suggest that intrauterine and postnatal hyperketonemia lead to an altered metabolism of glutamine and glutamate. It is postulated that this effect is related to the delayed development of glutaminase ( l -glutamine amido-hydrolase EC 3.5.1.2) and glutamate dehydrogenase ( l -glutamate: NAD oxidoreductase EC 1.4.1.2).
The specific activities of glutamate dehydrogenase (GDH), glutaminase and glutamine synthetase ( l -glutamate: ammonia ligase EC 6.3.1.2) in the brains of newborn rats increased during early development. A positive correlation was observed between the specific activity of glutaminase and the concentration of glutamate in the brain as well as between the concentrations of blood and brain glutamine and glutamate in both control and hyperketonemic pups. This indicates a different degree of permeability and metabolism for glutamine and glutamate in the brain during the neonatal period, as compared to adulthood.
In hyperketonemic pups, glutamine and glutamate metabolism were found to differ from that in control animals. The concentrations of glutamate were higher, and glutamine lower, in both the blood and brain as compared to that in controls. The concentrations of α-ketoglutarate were also lower in their brain. In the brains of hyperketonemic and control pups, the concentration of malate was the same. During the first 3 weeks of life the increase of spec. act. of GDH and glutaminase was found to be suppressed in the brains of hyperketonemic pups. However, the spec. act. of glutamine synthetase was similar to that of the control pups.  相似文献   

9.
Abstract— Uptake kinetics of l -glutamate in cultured, normal glia cells obtained from the brain hemispheres of newborn mice were measured together with the activities of the glutamate metabolizing enzymes, glutamic-oxaloacetate-transaminase, glutamate dehydrogenase and glutamine synthetase. During 3 weeks of culturing, the activities of the enzymes rose from low neonatal values toward the levels in the adult brain (206, 12.3 and 25.9 nmol. min−1. mg−1 cell protein for the three enzymes, respectively). The uptake kinetics indicated an unsaturable component together with an uptake following Michaelis-Menten kinetics with a Km of 220 μ m and a V max of 7.9 nmol. min−1. mg−1 cell protein. The saturable glutamate uptake was inhibited by d -glutamate, l -aspartate and α-aminoadipate whereas l -glutamine, GABA and glutarate had no effect. The uptake which was Ca2+-independent had a Km for sodium of 18m m and it was stimulated by an increase in the external potassium concentration from 5 to 10 and 25 m m. The results suggest that glia cells are important for the uptake of glutamate from synaptic clefts and for the subsequent metabolism of glutamate.  相似文献   

10.
Abstract— Studies were made on the effects of undernutrition at different ages during the neonatal period and of the comparative effects of postweaning protein and calorie deficiencies in neonatally undernourished or normally reared animals. Neonatal undernutrition resulted in deficits in body wt, brain wt and the activities of brain glutamate dehydrogenase and glutamate decarboxylase. Percentage deficits in brain wt were maximum in the first week of life but those in brain enzymes were greater in the second week. Rehabilitation of neonatally undernourished animals reversed the deficits in brain wt and brain enzymes. Post-weaning protein deficiency produced similar deficits in brain enzymes in both neonatally undernourished and normally reared animals. With post-weaning undernutrition, however, these deficits were found only in animals subjected to neonatal undernutrition as well.  相似文献   

11.
Abstract— The experiments reported here confirm that glutamate can penetrate the inner membrane of isolated rat brain non-synaptosomal mitochondria, either on a glutamate-hydroxyl antiporter or on a glutamate-aspartate antiporter. An inhibition of respiratory activity of mitochondria with glutamate as substrate was obtained in the presence of avenaciolide or N-ethylmaleimide. Swelling of the mitochondria in iso-osmotic NH4+-l -glutamate was inhibited in the presence of avenaciolide and N-ethylmaleimide, but mersalyl, kainic acid, glisoxepide and amino-oxyacetic acid had no effect on the glutamate-hydroxyl exchange. Glutamate induced the reduction of intramitochondrial NAD(P), as estimated by double-beam spectrophotometry, and this reduction was inhibited on the one hand by N-ethylmaleimide, avenaciolide or fuscine, on the other hand by aminooxyacetic acid. A direct estimation of the penetration of l -[14C]glutamate into brain mitochondria was performed by using the centrifugation-stop procedure. This penetration followed saturation kinetics, with a mean apparent Km of 1.56 MM at pH 7.4 and at 20°C, the value of Knax was 4.34 nmol per min per mg protein in the same conditions. IV-Ethylmaleimide slowed down the initial rate of glutamate penetration, and this inhibition appeared to be non-competitive with a Ki of 0.7 Mm -at pH 7.4 and at 20°C. The entry of glutamate was pH-dependent and it increased 2-fold in the pH range of 7.4 to 6.4. A temperature-dependence of glutamate transport was also shown between 2 and 25°C; the Arrhenius plot was a straight line, with a calculated EA of 12.8 kCal per mol of glutamate and a Q10 of 2.16. The activity of γ-glutamyl transpeptidase was practically absent in these rat brain mitochondria. Oxidation of extramitochondrial NADH by the‘malate-aspartate shuttle’reconstituted in vitro was followed in rat brain non-synaptosomal mitochondria. In the absence of extramitochondrial malate or glutamate the ‘shuttle’ did not function, and in the absence of extramitochondrial aspartate the rate of NADH oxidation was low. Glutamine or γ-aminobutyrate did not replace glutamate efficiently. A high inhibition of the‘malate-aspartate shuttle’occurred in the presence of avenaciolide or mersalyl, and a moderate one in the presence of n-ethylmaleimide, glisoxepide or n-butylmalonate. Glutaminase activity in intact brain mitochondria was inhibited in the presence of extramitochondrial glutamate.  相似文献   

12.
—A method is described for the preparation of glutamate dehydrogenase in a highly purified form from rat brain. Only one protein band was detected when the enzyme was subjected to electrophoresis on SDS polyacrylamide gels. The rat brain enzyme was essentially identical to the rat liver enzyme with respect to electrophoresis on SDS polyacrylamide gels, immunochemical properties and most kinetic parameters. However, the brain enzyme was much less reactive with glutamate, was more sensitive to inhibition by haloperidol, and was considerably more stable than the liver enzyme.  相似文献   

13.
Abstract— Mitochondrial and cytoplasmic forms of aspartate aminotransferase were purified from rat brain homogenates and tested for their ability to catalyze transamination of various aromatic amino acids. The mitochondrial enzyme exhibited activity toward tyrosine and phenylalanine with 2-oxoglutar-ate as acceptor, although the specific activities were less than 1% of the corresponding aspartate activity when all substrates were 10 mM. Even less activity was seen with DOPA, 5-hydroxytryptophan and tryptophan. The cytoplasmic aspartate aminotransferase was active toward tryptophan, 5-hydroxytryptophan and DOPA, but these transaminations were favored by pyruvate or oxaloacetate rather than 2-oxoglutarate as keto acid. Based on co-migration of aromatic activities with the respective aspartate aminotransferases during isoelectric focusing and based on equal sensitivities of aromatic transamination and aspartate transamination to inhibition by vinylglycine, it was concluded that all activities resided in the aspartate aminotransferase enzymes. Some doubt exists, however, as to the physiological significance of these alternate activities in view of the requirement that aromatic amino acids must compete with aspartate for transamination by these enzymes.  相似文献   

14.
The uptake and release of glutamate and of GABA, as well as the effect of high potassium concentrations (35 or 80 mM) hereupon, were studied by aid of 14C-labelled amino acids in brain cortex slices from rats of different ages between birth and adulthood. Both the extent of the uptake (i.e. the tissue/medium ratio of 14C at, or close to, equilibrium) and the rate of uptake (i.e. the tissue/ medium ratio of 14C after short (5 min) incubation periods) increased with age. Differences were, however, found between glutamate and GABA, and the extent of the GABA uptake had a distinct maximum during the second postnatal week. At all ages, high concentrations of potassium caused a decrease in the rate of GABA uptake but were without effect on the rate with which glutamate was taken up. The release of the two amino acids occurred with approximately the same half-time (50 min) in slices from animals of at least 14 days of age. Before that time the release of glutamate was somewhat faster, whereas that of GABA was much slower, especially during the first postnatal week (half-time 90 min). The ontogenetic alterations in the effect of excess potassium were complex and varied both between the two potassium concentrations used and between the two amino acids. The results are thus compatible with the existence of different transport systems for the two amino acids, They also suggest that glutamate may exert other functions in addition to its role as a putative transmitter.  相似文献   

15.
16.
为分析NMDA和非NMDA受体在介导脊髓不同性质疼痛的机能分化,应用微透析技术,测量刺激皮肤和肌肉神经引起的天门冬氨酸(Asp)和谷氨酸(Glu)在脊髓背角的释放。电刺激皮肤神经兴奋C纤维诱发的Asp和Glu的释放分别是基础值的(323±55)%(P<001)和(169±16)%(P<005);电刺激肌肉神经兴奋C纤维诱发的Asp和Glu的释放分别是基础值的(150±16)%(P<001)和(218±42)%(P<005)。兴奋皮肤传入引起的Asp释放明显高于Glu的释放(约3倍);而兴奋肌肉传入引起的Glu释放明显高于Asp的释放(约2倍)。从而提示,皮肤伤害性传入主要引起Asp的释放增加,而肌肉的伤害性传入则主要引起Glu的释放增加,它们分别主要作用于NMDA和非NMDA受体而介导不同的痛传入信息。  相似文献   

17.
The 24h changes of glutamate (GLU) and aspartate (ASP) werestudied in the median eminence (ME) and hypothalamic areas. It was analyzedwhether prolactin may change their daily patterns. The hypothalamic concentrationof these amino acids was measured by high-performance liquid chromatography(HPLC) with fluorometric detection. Plasma prolactin levels increased overthe 24h light-dark cycle after pituitary grafting compared to controls, andits circadian rhythm was disrupted. In controls, aspartate and glutamate inthe hypothalamic areas studied followed a specific daily variation or showedno rhythmicity. In the median eminence, hyperprolactinemia seem to phase advancethe aspartate or glutamate peaks from 16:00 to 12:00. In the mediobasal hypothalamus,hyperprolactinemia altered daily changes of aspartate and significantly decreasedits concentration. Also, it seems to delay the nocturnal glutamate peak comparedto controls. In the posterior hypothalamus, hyperprolactinemia did not changeaspartate and glutamate concentrations and their daily changes, although itincreased the glutamine concentration. These data show the existence of 24hchanges of amino acid concentration in three of the hypothalamic regions studied.Increased plasma prolactin levels differentially affected these patterns dependingon the hypothalamic area analyzed. (ChronobiologyInternational, 17(5), 631–643, 2000)  相似文献   

18.
Abstract— Rats have been subjected to portocaval anastomosis and the ammonium ion in plasma and the glutamate and glutamine levels in plasma, red cells and brain have been estimated up to 6 weeks after operation. The glutamine, but not the glutamate, levels in brain were consistently raised, being about 2.5 times greater than normal and the level can be correlated with the level of plasma ammonium ion. Consideration is given to the possibility that the glutamine may be in the greatly enlarged neuroglial compartment in this abnormal metabolic state.  相似文献   

19.
Abstract— The metabolism of [U-14C]glutamate was followed in vivo in the octopus Eledone cirrhosa following intracranial injection, and compared with that in the mammalian brain.
By contrast with the rat brain, the specific activity of glutamine recovered from Eledone optic and vertical lobes was lower than that of glutamate at short time intervals after injection. Thus the Waelsch effect was not apparent in this species. Again, in contrast with the rat brain, radioactivity could be found in alanine but not in GABA following [U-14C]glutamate injection. This was compatible with observations made previously in vitro.
The significance of these intraspecies differences in metabolism and compartmentation is discussed.  相似文献   

20.
—Brain glucose and glycogen concentrations have been studied in mice treated with allylglycine, 4-deoxypyridoxine and isoniazid, and the effects compared with the preconvulsive increase in brain glucose and glycogen concentration that follows d , l -methionine sulphoximine treatment. Allylglycine (180 mg/kg), 4-deoxypyridoxine (250 mg/kg), isoniazid (150 mg/kg) and d ,l -methionine sulphoximine (300 mg/kg) when given to mice at room temperature, cause a fall in rectal temperature which can be prevented by maintaining the mice in an incubator at 33-34°C. An increase in brain glucose concentration is seen after allylglycine (+ 133%), d ,l -methionine sulphoximine (+ 113%) and 4-deoxypyridoxine (+ 70%) treatment when mice are kept at room temperature and killed before convulsions occur. This is associated with a rise in blood glucose concentration after allylglycine, but not after the other drugs. Preventing the fall in rectal temperature reduces, but does not abolish, the rise in brain glucose concentration seen after allylglycine, d ,l -methionine sulphoximine and 4-deoxypyridoxine. Brain glycogen concentration increases at room temperature after D,L-methionine sulphoximine and 4-deoxypyridoxine, but in mice with maintained body temperature only 4-deoxypyridoxine produces an increase in brain glycogen. Isoniazid does not increase brain glucose or glycogen at room temperature, but reduces their concentration in mice kept in the incubator. All four drugs are known to act on amino acid metabolism; d ,l -methionine sulphoximine potently inhibits glutamine synthetase whereas 4-deoxypyridoxine, allylglycine and isoniazid inhibit glutamate decarboxylase. The connection, if any, between a block in the further metabolism of glutamate and an increase in brain glucose and glycogen is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号