首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

2.
In human placenta, 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, an enzyme complex found in microsomes and mitochondria, synthesizes progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate. The dehydrogenase and isomerase activities of the mitochondrial enzyme were copurified (733-fold) using sequential cholate solubilization, ion exchange chromatography (DEAE-Toyopearl 650S), and hydroxylapatite chromatography (Bio-Gel HT). Enzyme homogeneity was demonstrated by a single protein band in SDS-polyacrylamide gel electrophoresis (monomeric Mr = 41,000), gel filtration at constant specific enzyme activity (Mr = 77,000), and a single NH2-terminal sequence. Kinetic constants were determined for the oxidation of pregnenolone (Km = 1.6 microM, Vmax = 48.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.4 microM, Vmax = 48.5 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.3 microM, Vmax = 914.2 nmol/min/mg) and 5-androstene-3,17-dione (Km = 27.6 microM, Vmax = 888.4 nmol/min/mg. Mixed substrate studies showed that the dehydrogenase and isomerase activities utilize their respective pregnene and androstene substrates competitively. Dixon analysis demonstrated that the product steroids, progesterone and androstenedione, are competitive inhibitors of the C-21 and C-19 dehydrogenase activities. Enzyme purified from mitochondria and microsomes had similar kinetic profiles with respect to substrate utilization, product inhibition, and cofactor (NAD+) reduction (mean Km +/- SD using C-19 and C-21 dehydrogenase substrates = 26.4 +/- 0.8 microM, mean Vmax = 73.2 +/- 1.3 nmol/min/mg). Pure enzyme from both organelles exhibited identical biophysical properties in terms of molecular weight and subunit composition, pH optima (pH 9.8, dehydrogenase; pH 7.5, isomerase), temperature optimum (37 degrees C), stability in storage and solution, effects of divalent cations, and the single NH2-terminal sequence of 27 amino acids. These results suggest that the mitochondrial and microsomal enzymes are the same protein localized in different organelles.  相似文献   

3.
Leukotriene A4 hydrolase from perfused guinea-pig liver was purified 1200-fold to near homogeneity with a yield of about 20%. Apparent values of Km and Vmax at 37 degrees C (27 microM and 68 mumol x mg-1 x min-1), turnover number, and activation energy for the conversion of leukotriene A4 into leukotriene B4 were estimated from kinetic data obtained at -10 degrees C, 0 degree C and +10 degrees C (Arrhenius plots). Physical properties including Mr (67,000-71,000), pH optimum, isoelectric point and Stokes' radius were determined. The amino acid composition and N-terminal amino acid sequence were established after carboxymethylation of the enzyme. Unlike liver cytosolic epoxide hydrolase, the purified enzyme did not catalyze the conversion of leukotriene A4 into (5S,6R)-5,6-dihydroxy-7,9-trans-11,14-cis-icosatetraenoic acid.  相似文献   

4.
In human pregnancy, placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase produce progesterone from pregnenolone and metabolize fetal dehydroepiandrosterone sulfate to androstenedione, an estrogen precursor. The enzyme complex was solubilized from human placental microsomes using the anionic detergent, sodium cholate. Purification (500-fold, 3.9% yield) was achieved by ion exchange chromatography (Fractogel-TSK DEAE 650-S) followed by hydroxylapatite chromatography (Bio-Gel HT). The purified enzyme was detected as a single protein band in sodium dodecylsulfate-polyacrylamide gel electrophoresis (monomeric Mr = 19,000). Fractionation by gel filtration chromatography at constant specific enzyme activity supported enzyme homogeneity and determined the molecular mass (Mr = 76,000). The dehydrogenase and isomerase activities copurified. Kinetic constants were determined at pH 7.4, 37 degrees C for the oxidation of pregnenolone (Km = 1.9 microM, Vmax = 32.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.8 microM, Vmax = 32.0 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.7 microM, Vmax = 618.3 nmol/min/mg) and 5-androstene-3,17-dione (Km = 23.7 microM, Vmax = 625.7 nmol/min/mg). Mixed substrate analyses showed that the dehydrogenase and isomerase reactions use the appropriate pregnene and androstene steroids as alternative, competitive substrates. Dixon analyses demonstrated competitive inhibition of the oxidation of pregnenolone and dehydroepiandrosterone by both product steroids, progesterone and androstenedione. The enzyme has a 3-fold higher affinity for androstenedione than for progesterone as an inhibitor of dehydrogenase activity. Based on these competitive patterns of substrate utilization and product inhibition, the pregnene and androstene activities of 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase may be expressed at a single catalytic site on one protein in human placenta.  相似文献   

5.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

6.
Enzymic activities catalyzing allylic epoxide, leukotriene A4, to leukotriene C4 by conjugation with glutathione were present mainly in microsomal fractions of spleens and lungs of guinea pigs and rats. Leukotriene C4 (LTC4) synthase was solubilized from the microsomes of guinea-pig lung by the new procedures of a combination of 3-[3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS), digitonin and KCl. The enzyme was partially purified by two steps of column chromatography which resulted in a complete resolution of the enzyme from glutathione S-transferases (EC 2.5.1.18). The partially purified LTC4 synthase showed a Vmax value of 40 nmol/min per mg, and the apparent Km values for LTA4 and glutathione were 36 microM and 1.6 mM, respectively. The enzyme was unstable, and half of the activity was lost by incubation at 37 degrees C for 3 min. Glutathione at 10 mM completely protected the enzyme against this inactivation, while other sulfhydryl-group-reducing reagents were ineffective. The partially purified enzyme revealed a high specificity towards 5,6-epoxide leukotrienes (LTA4 and its methyl ester), while rat cytosolic glutathione S-transferases catalyzed conjugation of glutathione to various positional isomers of epoxide leukotrienes.  相似文献   

7.
3 beta,20 alpha-Hydroxysteroid oxidoreductase was purified to homogeneity from fetal lamb erythrocytes. The Mr 35,000 enzyme utilizes NADPH and reduces progesterone to 4-pregnen-20 alpha-ol-3-one [Km = 30.8 microM and Vmax = 0.7 nmol min-1 (nmol of enzyme)-1] and 5 alpha-dihydrotestosterone to 5 alpha-androstane-3 beta, 17 beta-diol [Km = 74 microM and Vmax = 1.3 nmol min-1 (nmol of enzyme)-1]. 5 alpha-Dihydrotestosterone competitively inhibits (Ki = 102 microM) 20 alpha-reductase activity, suggesting that both substrates may be reduced at the same active site. 16 alpha-(Bromoacetoxy)progesterone competitively inhibits 3 beta- and 20 alpha-reductase activities and also causes time-dependent and irreversible losses of both 3 beta-reductase and 20 alpha-reductase activities with the same pseudo-first order kinetic t1/2 value of 75 min. Progesterone and 5 alpha-dihydrotestosterone protect the enzyme against loss of the two reductase activities presumably by competing with the affinity alkylating steroid for the active site of 3 beta,20 alpha-hydroxysteroid oxidoreductase. 16 alpha-(Bromo[2'-14C]acetoxy) progesterone radiolabels the active site of 3 beta,20 alpha-hydroxysteroid oxidoreductase wherein 1 mol of steroid completely inactivates 1 mol of enzyme with complete loss of both reductase activities. Hydrolysis of the 14C-labeled enzyme with 6 N HCl at 110 degrees C and analysis of the amino acid hydrolysate identified predominantly N pi-(carboxy[2'-14C]methyl)histidine [His(pi-CM)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In earlier studies, two distinct molecules, 20 alpha-HSD-I and 20 alpha-HSD-II, responsible for 20 alpha-HSD activity of pig adrenal cytosol were purified to homogeneity and characterized [S. Nakajin et al., J. Steroid Biochem. 33 (1989) 1181-1189]. We report here that the purified 20 alpha-HSD-I, which mainly catalyzes the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 alpha-dihydroxy-4-pregnen-3-one, catalyzes 3 alpha-hydroxysteroid oxidoreductase activity for 5 alpha (or 5 beta)-androstanes (C19), 5 alpha (or 5 beta)-pregnanes (C21) in the presence of NADPH as the preferred cofactor. The purified enzyme has a preference for the 5 alpha (or 5 beta)-androstane substrates rather than 5 alpha (or 5 beta)-pregnane substrates, and the 5 beta-isomers rather than 5 alpha-isomers, respectively. Kinetic constants in the reduction for 5 alpha-androstanedione (Km; 3.3 microM, Vmax; 69.7 nmol/min/mg) and 5 beta-androstanedione (Km; 7.7 microM, Vmax; 135.7 nmol/min/mg) were demonstrated for comparison with those for 17 alpha-hydroxyprogesterone (Km; 26.2 microM, Vmax; 1.3 nmol/min/mg) which is a substrate for 20 alpha-HSD activity. Regarding oxidation, the apparent Km and Vmax values for 3 alpha-hydroxy-5 alpha-androstan-17-one were 1.7 microM and 43.2 nmol/min/mg, and 1.2 microM and 32.1 nmol/min/mg for 3 alpha-hydroxy-5 beta-androstan-17-one, respectively. 20 alpha-HSD activity in the reduction of 17 alpha-hydroxyprogesterone catalyzed by the purified enzyme was inhibited competitively by addition of 5 alpha-DHT with a Ki value of 2.0 microM. Furthermore, 17 alpha-hydroxyprogesterone inhibited competitively 3 alpha-HSD activity with a Ki value of 150 microM.  相似文献   

9.
The ability of three distinct types of human cytosolic glutathione transferase to catalyze the formation of leukotriene C4 from glutathione and leukotriene A4 has been demonstrated. The near-neutral transferase (mu) was the most efficient enzyme with Vmax= 180 nmol X min-1 X mg-1 and Km= 160 microM. The Vmax and Km values for the basic (alpha-epsilon) and the acidic (pi) transferases were 66 and 24 nmol X min-1 X mg-1 and 130 and 190 microM, respectively. The synthetic methyl ester derivative of leukotriene A4 was somewhat more active as a substrate for all the three forms of the enzyme.  相似文献   

10.
We have identified an activity in rabbit reticulocyte lysate as peptidyl-tRNA hydrolase, based upon its ability to hydrolyze native reticulocyte peptidyl-tRNA, isolated from polyribosomes, and N-acylaminoacyl-tRNA, and its inability to hydrolyze aminoacyl-tRNA, precisely the same substrate specificity previously reported for peptidyl-tRNA hydrolase from bacteria or yeast. The physiological role of the reticulocyte enzyme may be to hydrolyze and recycle peptidyl-tRNA that has dissociated prematurely from elongating ribosomes, as suggested for the bacterial and yeast enzymes, since reticulocyte peptidyl-tRNA hydrolase is completely incapable of hydrolyzing peptidyl-tRNA that is still bound to polyribosomes. We have purified reticulocyte peptidyl-tRNA hydrolase over 5,000-fold from the postribosomal supernatant with a yield of 14%. The purified product shows a 72-kDa band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis that has co-purified with enzyme activity and comprises about 90% of the total stained protein, strongly suggesting that the 72-kDa protein is the enzyme. Sucrose density gradient analysis indicates an apparent molecular mass for the native enzyme of 65 kDa, implying that it is a single polypeptide chain. The enzyme is almost completely inactive in the absence of a divalent cation: Mg2+ (1-2 mM) promotes activity best, Mn2+ is partly effective, and Ca2+ and spermidine are ineffective. The hydrolase shows a Km of 0.60 microM and Vmax of 7.1 nmol/min/mg with reticulocyte peptidyl-tRNA, a Km of 60 nM and Vmax of 14 nmol/min/mg with Escherichia coli fMet-tRNA(fMet), and a Km of 100 nM and Vmax of 2.2 nmol/min/mg with yeast N-acetyl-Phe-tRNA(Phe). The enzyme has a pH optimum of 7.0-7.25, it is inactivated by heat (60 degrees C for 5 min), and its activity is almost completely inhibited by pretreatment with N-ethylmaleimide or incubation with 20 mM phosphate. The fact that the enzyme hydrolyzes E. coli but not yeast or reticulocyte fMet-tRNA(fMet) may be explained, at least in part, by structural similarities between prokaryotic tRNA(fMet) and eukaryotic elongator tRNA that are not shared by eukaryotic tRNA(fMet).  相似文献   

11.
A NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was purified to a specific activity of over 25,000 nmol NADH formed/min/mg protein with 50 microM prostaglandin E1 as substrate from the lungs of 28-day-old pregnant rabbits. This represented a 2600-fold purification of the enzyme with a recovery of 6% of the starting enzyme activity. The lungs of pregnant rabbits were used because a 42- to 55-fold induction of the PGDH activity was observed after 20 days of gestation. The enzyme was purified by CM-cellulose, DEAE-cellulose, Sephadex G-75, octylamino-agarose, and hydroxylapatite chromatography. The enzyme could not be purified by affinity chromatography using NAD- or blue dextran-bound resins. The purified enzyme was specific for NAD and had a subunit molecular weight of 29,000. The optimal pH range for the oxidation of prostaglandin E1 was between 10.0 and 10.4 using 3-(cyclohexylamino)propanesulfonic acid as the buffer. The Km and Vmax values for prostaglandin E1 were 33 microM and 40,260 nmol/min/mg protein, respectively, while the Km and Vmax values for prostaglandin E2 were 59 microM and 43,319 nmol/min/mg protein, respectively. The Km for prostaglandin F2 alpha was four times the value for prostaglandin E1. The PGDH activity was inhibited by p-chloromercuriphenylsulfonic acid but the enzymatic activity was restored by the addition of dithiothreitol. n-Ethylmaleimide also produced a rapid decline in enzymatic activity but when NAD was included in the incubation system, no inhibition was observed.  相似文献   

12.
The substrate 16-methylene estra-1,3,5(10)-triene-3,17 beta-diol (16-methylene estradiol-17 beta) and its enzyme-generated alkylating product, 3-hydroxy-16-methylene estra-1,3,5(10)-triene-17-one (16-methylene estrone), were synthesized to study the 17 beta- and 20 alpha-hydroxysteroid dehydrogenase activities which coexist in homogeneous enzyme purified from human placental cytosol. 16-Methylene estradiol, an excellent substrate (Km = 8.0 microM; Vmax = 2.8 mumol/mg/min) when enzymatically oxidized to 16-methylene estrone in the presence of NAD+ (256 microM), inactivates simultaneously the 17 beta- and 20 alpha-activities in a time-dependent and irreversible manner following pseudo-first order kinetics (t1/2 = 1.0 h, 100 microM, pH 9.2). 16-Methylene estradiol does not inactivate the enzyme in the absence of NAD+. 16-Methylene estrone (Km = 2.7 microM; Vmax = 2.9 mumol/mg/min) is an affinity alkylator (biomolecular rate constant k'3 = 63.3 liters/mol-s, pH 9.2; KI = 261 microM; k3 = 8.0 X 10(-4) S-1, pH 7.0) which also simultaneously inhibits both activities in an irreversible time-dependent manner (at 25 microM; t1/2 = 7.2 min, pH 9.2; t1/2 = 2.7 h, pH 7.0). Substrates (estradiol-17 beta, estrone, and progesterone) protect against inhibition of enzyme activity by 16-methylene estrone and 16-methylene estradiol. Affinity radioalkylation studies using 16-methylene [6,7-3H]estrone demonstrate that 1 mol of alkylator binds per mol of inactivated enzyme dimer. Thus, 16-methylene estradiol functions as a unique substrate for the enzymatic generation of a powerful affinity alkylator of 17 beta,20 alpha-hydroxysteroid dehydrogenase and should be a useful pharmacological tool.  相似文献   

13.
Bestatin, an inhibitor of aminopeptidases, was also a potent inhibitor of leukotriene (LT) A4 hydrolase. On isolated enzyme its effects were immediate and reversible with a Ki = 201 +/- 95 mM. With erythrocytes it inhibited LTB4 formation greater than 90% within 10 min; with neutrophils it inhibited LTB4 formation by only 10% during the same period, increasing to 40% in 2 h. Bestatin inhibited LTA4 hydrolase selectively; neither 5-lipoxygenase nor 15-lipoxygenase activity in neutrophil lysates was affected. Purified LTA4 hydrolase exhibited an intrinsic aminopeptidase activity, hydrolyzing L-lysine-p-nitroanilide and L-leucine-beta-naphthylamide with apparent Km = 156 microM and 70 microM and Vmax = 50 and 215 nmol/min/mg, respectively. Both LTA4 and bestatin suppressed the intrinsic aminopeptidase activity of LTA4 hydrolase with apparent Ki values of 5.3 microM and 172 nM, respectively. Other metallohydrolase inhibitors tested did not reduce LTA4 hydrolase/aminopeptidase activity, with one exception; captopril, an inhibitor of angiotensin-converting enzyme, was as effective as bestatin. The results demonstrate a functional resemblance between LTA4 hydrolase and certain metallohydrolases, consistent with a molecular resemblance at their putative Zn2(+)-binding sites. The availability of a reversible, chemically stable inhibitor of LTA4 hydrolase may facilitate investigations on the role of LTB4 in inflammation, particularly the process termed transcellular biosynthesis.  相似文献   

14.
The enzymatic conversion of leukotriene A4 into 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid, catalyzed by mouse liver cytosolic epoxide hydrolase (EC 3.3.2.3), was recently described (Haeggstr?m, J., Meijer, J. and R?dmark, O. (1986) J. Biol. Chem. 261, 6332-6337). In the present study, we report analytical data confirming the stereochemistry of this novel enzymatic metabolite of leukotriene A4. By steric analysis of the vicinal diol and comparison with synthetic material, the structure was established as (5S,6R)-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid. Apparent kinetic constants of this reaction were determined and found to be 5 microM and 550 nmol.mg-1.min-1, for Km and Vmax, respectively. Also, a semipurified preparation of human liver cytosolic epoxide hydrolase avidly catalyzed the same hydrolysis of leukotriene A4 (apparent Km was 8 microM). The enzyme was not inactivated by leukotriene A4, as judged by time-course experiments with a second substrate addition.  相似文献   

15.
Human erythrocytes contained a soluble cytosolic epoxide hydrolase for stereospecific enzymatic hydration of leukotriene A4 into leukotriene B4. The enzyme was purified 1100-fold, to apparent electrophoretic homogeneity, by conventional DEAE-Sephacel fractionation followed by high performance anion exchange and chromatofocusing procedures. Its characteristics include a molecular weight of 54,000 +/- 1,000, an isoelectric point 4.9 +/- 0.2, a Km apparent from 7 to 36 microM for enzymatic hydration of leukotriene A4, and a pH optimum ranging from 7 to 8. The enzyme was partially inactivated by its initial exposure to leukotriene A4. There was slow but detectable enzymatic hydration (pmol/min/mg) of certain arachidonic acid epoxides including (+/-)-14,15-oxido-5,8-11-eicosatrienoic acid and (+/-)-11,12-oxido-5,8,14-eicosatrienoic acid, but not others, including 5,6-oxido-8,11,14-eicosatrienoic acid. Human erythrocyte epoxide hydrolase did not hydrate either styrene oxide or trans-stilbene oxide. In terms of its physical properties and substrate preference for leukotriene A4, the erythrocyte enzyme differs from previously described versions of epoxide hydrolase. Human erythrocytes represent a novel source for an extrahepatic, cytosolic epoxide hydrolase with a potential physiological role.  相似文献   

16.
Leukotriene A4 epoxide hydrolase from dog lung, a soluble enzyme catalyzing the hydrolysis of leukotriene A4 (LTA4) to leukotriene B4 (LTB4) was partially purified by anion exchange HPLC. The enzymatic reaction obeys Michaelis- Menten kinetics. The apparent Km ranged between 15 and 25 microM and the enzyme exhibited an optimum activity at pH 7.8. An improved assay for the epoxide hydrolase has been developed using bovine serum albumin and EDTA to increase the conversion of LTA4 to LTB4. This method was used to produce 700 mg of LTB4 from LTA4 methyl ester. The partial by purified enzyme was found to be uncompetitively inhibited by divalent cations. Ca+2, Mn+2, Fe+2, Zn+2 and Cu+2 were found to have inhibitor constants (Ki) of 89 mM, 3.4 mM, 1.1 mM, 0.57 mM, and 28 microM respectively Eicosapentaenoic acid was shown to be a competitive inhibitor of this enzyme with a Ki of 200 microM. From these inhibition studies, it can be theorized that the epoxide hydrolase has at least one hydrophobic and one hydrophilic binding site.  相似文献   

17.
A cytochrome P-450 from neonatal pig testicular microsomes was purified to homogeneity as judged by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels and by double diffusion on agar against antiserum raised in rabbits against the protein. The enzyme shows both 17 alpha-hydroxylase (Vmax = 4.6 nmol of product/min/nmol of P-450, Km = 1.5 microM) and C17,20 lyase (Vmax = 2.6 nmol of product/min/nmol of P-450, Km = 2.4 microM) activities. Both activities require NADPH and a flavoprotein P-450 reductase; microsomal P-450 reductase from pig and rat livers was used in these studies. The enzyme possesses a single subunit of molecular weight 59,000 +/- 1,000 as determined by electrophoresis on polyacrylamide with sodium dodecyl sulfate and by chromatography on sodium dodecyl sulfate-Sephadex. The enzyme is a glycoprotein and contains 8 nmol of heme/mg of protein and 40 nmol of phospholipid/mg of protein. All heme detected by pyridine hemochromogen is accounted for as P-450 by difference spectroscopy of the reduced P-450.carbon monoxide complex. This complex shows an absorbance maximum at 448 nm with no evidence of P-420. These studies raise the possibility that one microsomal protein (cytochrome P-450) may possess two enzymatic activities (hydroxylase and lyase).  相似文献   

18.
We report here the purification and characterization of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase, a bifunctional enzyme (PMI-GMP) which catalyzes both the phosphomannose isomerase (PMI) and guanosine 5'-diphospho-D-mannose pyrophosphorylase (GMP) reactions of the Pseudomonas aeruginosa alginate biosynthetic pathway. The PMI and GMP activities co-eluted in the same protein peak through successive fractionation on hydrophobic interaction, ion exchange, and gel filtration chromatography. The purified enzyme migrated as a 56,000 molecular weight protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the native protein migrated as a monomer of 54,000 molecular weight upon gel filtration chromatography. The apparent Km for D-mannose 6-phosphate was 3.03 mM, and the Vmax was 830 nmol/min/mg of enzyme. For the GMP forward reaction, apparent Km values of 20.5 microM and 29.5 microM for D-mannose 1-phosphate and GTP, respectively, were obtained from double reciprocal plots. The GMP forward reaction Vmax (5,680 nmol/min/mg of enzyme) was comparable to the reverse reaction Vmax (5,170 nmol/min/mg of enzyme), and the apparent Km for GDP-D-mannose was determined to be 14.2 microM. Both reactions required Mg2+ activation, but the PMI reaction rate was 4-fold higher with Co2+ as the activator. PMI (but not GMP) activity was sensitive to dithiothreitol, indicating the involvement of disulfide bonds to form a protein structure capable of PMI activity. DNA sequencing of a cloned mutant algA gene from P. aeruginosa revealed that a point mutation at nucleotide 961 greatly decreased the levels of both PMI and GMP in a crude extract.  相似文献   

19.
Calcineurin A was purified by calmodulin-Sepharose affinity chromatography from Sf9 cells infected with recombinant baculovirus containing the cDNA of a rat calcineurin A isoform. The Sf9-expressed calcineurin A has a low basal phosphatase activity in the presence of EDTA (0.9 nmol/min/mg) which is stimulated 3-5-fold by Mn2+. Calmodulin increased the Mn2+ stimulated activity 3-5-fold. Bovine brain calcineurin B increased the A subunit activity 10-15-fold, and calmodulin further stimulated the activity of reconstituted A and B subunits 10-15-fold (644 nmol/min/mg). The Km of calcineurin A for 32P-RII pep (a peptide substrate (DLDVPIPGRFDRRVSVAAE) for CaN), was 111 microM with or without calmodulin, and calmodulin increased the Vmax about 4-fold. The Km of reconstituted calcineurin A plus B for 32P-RII pep was 20 microM, and calmodulin increased the Vmax 18-fold without affecting the Km. CaN A467-492, a synthetic autoinhibitory peptide (ITSFEEAKGLDRINERMPPRRDAMP) from calcineurin, inhibited the Mn2+/calmodulin-stimulated activities of the reconstituted enzyme and the A subunit with IC50's of 25 microM and 90 microM, respectively. The reconstitution of the phosphatase activity of an expressed isoform of calcineurin A by purified B subunit and calmodulin may facilitate comparative studies of the regulation of calcineurin A activity by the B subunit and calmodulin.  相似文献   

20.
L Orning  F A Fitzpatrick 《Biochemistry》1992,31(17):4218-4223
Albumins from several species activated the bifunctional, Zn2+ metalloenzyme amino-peptidase/leukotriene A4 hydrolase (EC 3.3.2.6). Bovine serum albumin, 1 mg/mL, increased hydrolysis of L-proline-p-nitroanilide and leucine-enkephalin by 12-fold and 7-fold, respectively. The apparent Km for L-proline-p-nitroanilide was inversely proportional to the albumin concentration from 0 to 1 mg/mL, declining from 9.4 to 0.7 mM without an appreciable change in apparent Vmax. These data imply a random activation process in which the enzyme-activator complex is catalytically dominant. Hill plots indicated a 1:1 stoichiometric relationship between albumin and enzyme. Secondary plots of slope versus the reciprocal of albumin concentration indicated that it binds to the enzyme with an affinity constant of 0.9 microM. The pH optimum of the nonactivated enzyme occurred at pH 8; the albumin-activated enzyme had an optimum near pH 7. Neither ultrafiltration nor dialysis of albumin altered its activating effect, but boiling abolished it. Albumin did not affect other cytosolic or microsomal leucine aminopeptidases, or gamma-glutamyltransferase. Albumin functions as a nonessential activator, since enzymatic activity was always detectable in its absence. Chloride ions, which activate other Zn2+ metalloenzymes, also activated leukotriene A4 hydrolase/aminopeptidase with an EC50 = 50 mM, increasing its initial velocity 2.2-fold in the absence of albumin. Zn2+ activated the enzyme, increasing its apparent Vmax but not its apparent Km, suggesting it replaced Zn2+ lost from the active site, especially at acidic pH. At concentrations greater than 30-50 microM, Zn2+ was inhibitory. Albumin mitigated the effect of chloride, but not the effect of Zn2+ or that of the competitive inhibitor, captopril.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号