首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aeromonas hydrophila secretes several extracellular proteins that are associated with virulence including an enterotoxin, a protease, and the hole-forming toxin, aerolysin. These degradative enzymes and toxins are exported by a conserved pathway found in many Gram-negative bacteria. In Pseudomonas aeruginosa this export pathway and type IV pilus biogenesis are dependent on the product of the pilD gene. PilD is a bifunctional enzyme that processes components of the extracellular secretory pathway as well as a type IV prepilin. An A. hydrophila genomic library was transferred into a P. aeruginosa pilD mutant that is defective for type IV pilus biogenesis. The A. hydrophila pilD homologue, tapD , was identified by its ability to complement the pilD mutation in P. aeruginosa . Transconjugants containing tapD were sensitive to the type IV pilus-specific phage, PO4. Sequence data revealed that tapD is part of a cluster of genes ( tapABCD ) that are homologous to P. aeruginosa type IV pilus biogenesis genes ( pilABCD ). We showed that TapB and TapC are functionally homologous to P. aeruginosa PilB and PilC, the first such functional complementation of pilus assembly demonstrated between bacteria that express type IV pili. In vitro studies revealed that TapD has both endopeptidase and N -methyltransferase activities using P. aeruginosa prepilin as substrate. Furthermore, we show that tapD is required for extracellular secretion of aerolysin and protease, indicating that tapD may play an important role in the virulence of A. hydrophila  相似文献   

2.
D Nunn  S Bergman    S Lory 《Journal of bacteriology》1990,172(6):2911-2919
The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits. The biogenesis of pili involves the synthesis of pilin precursor, cleavage of a six-amino-acid leader peptide, membrane translocation, and assembly of monomers into a filamentous structure extending from the bacterial surface. This report describes three novel genes necessary for the formation of pili. DNA sequences adjacent to pilA, the pilin structural gene, were cloned and mutagenized with transposon Tn5. Each of the insertions were introduced into the chromosome of P. aeruginosa PAK by gene replacement. The effect of the Tn5 insertions in the bacterial chromosome on pilus assembly was assessed by electron microscopy and sensitivity of mutants to a pilus-specific bacteriophage. The resultant mutants were also tested for synthesis and membrane localization of the pilin antigen in order to define the genes required for maturation, export, and assembly of pilin. A 4.0-kilobase-pair region of DNA adjacent to the pilin structural gene was found to be essential for formation of pili. This region was sequenced and found to contain three open reading frames coding for 62-, 38- to 45-, and 28- to 32-kilodalton proteins (pilB, pilC, and pilD, respectively). Three proteins of similar molecular weight were expressed in Escherichia coli from the 4.0-kilobase-pair fragment flanking pilA with use of a T7 promoter-polymerase expression system. The results of the analyses of the three genes and the implications for pilin assembly and maturation are discussed.  相似文献   

3.
PilD, originally isolated as an essential component for the biogenesis of the type IV pili of Pseudomonas aeruginosa, is a unique endopeptidase responsible for processing the precursors of the P. aeruginosa pilin subunits. It is also required for the cleavage of the leader peptides from the Pdd proteins, which are essential components of an extracellular secretion pathway specific for the export of a number of P. aeruginosa hydrolytic enzymes and toxins. Substrates for PilD are initially synthesized with short, i.e., 6- to 8-amino-acid-long, leader peptides with a net basic charge and share a high degree of amino acid homology through the first 16 to 30 residues at the amino terminus. In addition, they all have a phenylalanine residue at the +1 site relative to the cleavage site, which is N methylated prior to assembly into the oligomeric structures. In this study, the kinetics of leader peptide cleavage from the precursor of the P. aeruginosa pilin subunit by PilD was determined in vitro. The rates of cleavage were compared for purified enzyme and substrate as well as for enzyme and substrate contained within total membranes extracted from P. aeruginosa strains overexpressing the cloned pilD or pilA genes. Optimal conditions were obtained only when both PilD and substrate were contained within total membranes. PilD catalysis of P. aeruginosa prepilin followed normal Michaelis-Menten kinetics, with a measured apparent Km of approximately 650 microM, and a kcat of 180 min-1. The kinetics of PilD processing of another type IV pilin precursor, that from Neisseria gonorrhoeae with a 7-amino-acid-long leader peptide, were essentially the same as that measured for wild-type P. aeruginosa prepilin. Quite different results were obtained for a number of prepilin substrates containing substitutions at the conserved phenylalanine at the +1 position relative to the cleavage site, which were previously shown to be well tolerated in vivo. Substitutions of methionine, serine, and cysteine for phenylalanine show that Km values remain close to that measured for wild-type substrate, while kcat and kcat/Km values were significantly decreased. This indicates that while the affinity of enzyme for substrate is relatively unaffected by the substitutions, the maximum rate of catalysis favors a phenylalanine at this position. Interesting, PilD cleavage of one mutated pillin (asparagine) resulted in a lower Km value of 52.5 microM, which indicates a higher affinity for the enzyme, as well as a lower kcat value of 6.1 min m(-1). This suggests that it may be feasible to design peptide inhibitors of PilD.  相似文献   

4.
Prepilin peptidases cleave, among other substrates, the leader sequences from prepilin-like proteins that are required for type II protein secretion in Gram-negative bacteria. To begin to assess the importance of type II secretion for the virulence of an intracellular pathogen, we examined the effect of inactivating the prepilin peptidase (pilD) gene of Legionella pneumophila. Although the pilD mutant and its parent grew similarly in bacteriological media, they did differ in colony attributes and recoverability from late stationary phase. Moreover, at least three proteins were absent from the mutant's supernatant, indicating that PilD is necessary for the secretion of Legionella proteins. The absence of both the major secreted protein and a haemolytic activity from the mutant signalled that the L. pneumophila zinc metalloprotease is excreted via type II secretion. Most interestingly, the pilD mutant was greatly impaired in its ability to grow within Hartmannella vermiformis amoebae and the human macrophage-like U937 cells. As reintroduction of pilD into the mutant restored inefectivity and as a mutant lacking type IV pilin replicated like wild type, these data suggested that the intracellular growth of L. pneumophila is promoted by proteins secreted via a type II pathway. Intratracheal inoculation of guinea pigs revealed that the LD50 for the pilD mutant is at least 100-fold greater than that for its parent, and the culturing of bacteria from infected animals showed a rapid clearance of the mutant from the lungs. This is the first study to indicate a role for PilD and type II secretion in intracellular parasitism.  相似文献   

5.
Pseudomonas aeruginosa exports a number of hydrolytic enzymes and toxins using the type II or general secretion pathway, found in a variety of Gram-negative bacteria and requiring the functions of at least 12 gene products (XcpP–Z and PilD/XcpA in P. aeruginosa ). A number of these gene products are homologues of components of the type IV pilus biogenesis system, including four proteins, XcpT–W, which are highly similar to the pilin subunit in their size, localization and post-translational modifications. These proteins, in addition to the pilin subunit, are cleaved and methylated by the PilD/XcpA prepilin peptidase, but their interactions with other components of the export apparatus are unclear. Using a medium developed for the selection of export-proficient P. aeruginosa strains, we have isolated temperature-sensitive mutations in the xcpT gene and extragenic suppressors for one of the mutants. These suppressors fall into two classes, one that maps outside of the xcpP–Z gene cluster and may define additional cellular functions that are required for export, and a second that maps to the xcpR gene product and indicates a potential protein–protein interaction connecting two different cellular compartments and required for the assembly or function of the export apparatus.  相似文献   

6.
D N Nunn  S Lory 《Journal of bacteriology》1993,175(14):4375-4382
Four components of the apparatus of extracellular protein secretion of Pseudomonas aeruginosa, Xcpt, -U, -V, and -W (XcpT-W), are synthesized as precursors with short N-terminal leader peptides that share sequence similarity with the pilin subunit of this organism. A specialized leader peptidase/methylase, product of the pilD gene, has been shown to cleave the leader peptide from prepilin and to methylate the N-terminal phenylalanine of the mature pilin. Antibodies were prepared against XcpT-W and used to purify each of these proteins. Sequence analysis of XcpT-W has shown that these proteins, like mature pilin, contain N-methylphenylalanine as the N-terminal amino acid. Analysis of cellular fractions from wild-type and pilD mutant strains of P. aeruginosa showed that the precursor forms of XcpT-W are located predominantly in the bacterial inner membrane, and their localization is not altered after PilD-mediated removal of the leader sequence. These studies demonstrate that the biogenesis of the apparatus of extracellular protein secretion and that of type IV pili share a requirement for PilD. This bifunctional enzyme, acting in the inner membrane, cleaves the leader peptides from precursors of pilins and XcpT-W and subsequently methylates the amino group of the N-terminal phenylalanine of each of its substrates.  相似文献   

7.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

8.
9.
10.
Enteropathogenic Escherichia coli, a leading agent of infantile diarrhea worldwide, adheres to tissue culture cells in a pattern called "localized adherence." Localized adherence is associated with bundle-forming pili encoded by the plasmid bfpA gene, the product of which is homologous with the major structural subunit proteins of type IV fimbriae in other bacteria. Several of these proteins have been shown to be processed from a precursor by a specific prepilin peptidase. We cloned restriction fragments downstream of the bfpA gene into an E. coli-Pseudomonas aeruginosa shuttle vector and mobilized them into a P. aeruginosa prepilin peptidase (pilD) mutant. A plasmid containing a 1.3-kb PstI-BamHI fragment was able to complement the pilD mutation, as demonstrated by restoration of sensitivity to the pilus-specific bacteriophage PO4. The DNA sequence of this fragment revealed an open reading frame, designated bfpP, the predicted product of which is homologous to other prepilin peptidases, including TcpJ of Vibrio cholerae (30% identical amino acids), PulO of Klebsiella oxytoca (29%), and PilD of P. aeruginosa (28%). A bfpA::TnphoA mutant complemented with a bfpA-containing DNA fragment only partially processes the BfpA protein. When complemented with a larger fragment containing bfpP as well as bfpA, the mutant expresses the fully processed BfpA protein. P. aeruginosa PAK, but not a pilD mutant of PAK, expresses mature BfpA protein when the bfpA gene is mobilized into this strain. Thus, as in other type IV fimbria systems, enteropathogenic E. coli utilizes a specific prepilin peptidase to process the major subunit of the bundle-forming pilus. This prepilin petidase contains sequence and reciprocal functional homologies with the PilD protein of P. aeruginosa.  相似文献   

11.
Type IV pilus genes have been shown to be required for social gliding motility in Myxococcus xanthus . We report the discovery of four additional pil genes: pilD , a homologue of type IV prepilin leader peptidases; and pilG , pilH and pilI , which have no known homologues in other type IV pilus systems. pilH encodes an ATP-binding cassette (ABC) transporter homologue, the first such homologue to be required for the biogenesis of any bacterial pilus type. pilG and pilI are co-transcribed with pilH and appear to be functionally related to pilH . Null mutants of pilG , pilH and pilI all lack social motility, are deficient in pilus production, have elevated sporulation efficiencies and display similar developmental abnormalities. In addition, all three mutations reduced the amount of PilA found in the supernatant after cells were sedimented from liquid culture. We suggest that the products of these three genes form a single ABC exporter complex, in which pilI is an integral membrane protein with membrane-spanning domains, and pilG is an accessory factor. The complex may participate in pilus assembly and/or the export of PilA pilin.  相似文献   

12.
Cholera toxin secretion is dependent upon the extracellular protein secretion apparatus encoded by the eps gene locus of Vibrio cholerae . Although the eps gene locus encodes several type four prepilin-like proteins, the peptidase responsible for processing these proteins has not been identified. This report describes the identification of a prepilin peptidase from the V. cholerae genomic database by virtue of its homology with the PilD prepilin peptidase of Pseudomonas aeruginosa . Plasmid disruption or deletion of this peptidase gene in either El Tor or classical V. cholerae O1 biotype strains results in a dramatic decrease in cholera toxin secretion. In the case of the El Tor biotype mutants, surface expression of the type 4 pilus responsible for mannose-sensitive haemagglutination is abolished. The cloned V. cholerae peptidase processes either EpsI or MshA preproteins when co-expressed in E. coli . Mutation of the V. cholerae peptidase gene also results in a defect in virulence and decreased levels of OmpU. The V. cholerae peptidase gene sequence shows 80% homology with the Vibrio vulnificus VvpD type 4 prepilin peptidase required for pilus assembly and cytolysin secretion in V. vulnificus . Accordingly, the V. cholerae type 4 prepilin peptidase required for pilus assembly and cholera toxin secretion has been designated VcpD.  相似文献   

13.
The type II secretion pathway of Pseudomonas aeruginosa is involved in the extracellular release of various toxins and hydrolytic enzymes such as exotoxin A and elastase. This pathway requires the function of a macromolecular complex called the Xcp secreton. The Xcp secreton shares many features with the machinery involved in type IV pilus assembly. More specifically, it involves the function of five pilin-like proteins, the XcpT-X pseudopilins. We show that, upon overexpression, the XcpT pseudopilin can be assembled in a pilus, which we call a type II pseudopilus. Image analysis and filtering of electron micrographs indicated that these appendages are composed of individual fibrils assembled together in a bundle structure. Our observations thus revealed that XcpT has properties similar to those of type IV pilin subunits. Interestingly, the assembly of the type II pseudopilus is not exclusively dependent on the Xcp machinery but can be supported by other similar machineries, such as the Pil (type IV pilus) and Hxc (type II secretion) systems of P. aeruginosa. In addition, heterologous pseudopilins can be assembled by P. aeruginosa into a type II pseudopilus. Finally, we showed that assembly of the type II pseudopilus confers increased bacterial adhesive capabilities. These observations confirmed the ability of pseudopilins to form a pilus structure and raise questions with respect to their function in terms of secretion and adhesion, two crucial biological processes in the course of bacterial infections.  相似文献   

14.
Type IV pre-pilin leader peptidase was demonstrated to be required for protein secretion, in addition to its involvement in biogenesis of type IV pili. The type IV pre-pilin leader peptidase gene of Xanthomonas campestris pv. campestris was located on a 3 kb Acc l fragment on account of its hybridization with the DNA fragment containing the type IV pre-pilin leader-peptidase gene pilD/xcpA of Pseudomonas aeruginosa . Sequencing of the cloned fragment revealed an open reading frame (ORF) (designated xpsO ) of 287 amino acid residues. A protein with an apparent molecular mass of approximately 32.5 kDa was synthesized in vitro from a DNA fragment containing the xpsO gene. The amino acid sequence shares 50% identity with that of PilD throughout the entire sequence. Among other type IV pre-pilin leader peptidases, XpsO is unique in not having the two conserved -CXXC- motifs in a cytoplasmic domain. Instead, new motifs were noted when the protein was compared with XpsE, which is another member of the extracellular protein-secretion machinery. When the xpsO gene was introduced into the pilD mutant of P. aeruginosa , both the sensitivity against infection with the pilus-specific phage PO4 and the ability to secrete extracellular protein were recovered. Furthermore, immunoblot analysis indicated that the P. aeruginosa pilin was apparently processed in vivo by the xpsO gene product.  相似文献   

15.
Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Whereas molecular mechanisms of type IVa pilus assembly have been well documented for Pseudomonas aeruginosa and involve the PilD prepilin peptidase, no type IVb pili have been described in this microorganism. One subclass of type IVb prepilins has been identified as the Flp prepilin subfamily. Long and bundled Flp pili involved in tight adherence have been identified in Actinobacillus actinomycetemcomitans, for which assembly was due to a dedicated machinery encoded by the tad-rcp locus. A similar flp-tad-rcp locus containing flp, tad, and rcp gene homologues was identified in the P. aeruginosa genome. The function of these genes has been investigated, which revealed their involvement in the formation of extracellular Flp appendages. We also identified a gene (designated by open reading frame PA4295) outside the flp-tad-rcp locus, that we named fppA, encoding a novel prepilin peptidase. This is the second enzyme of this kind found in P. aeruginosa; however, it appears to be truncated and is similar to the C-terminal domain of the previously characterized PilD peptidase. In this study, we show that FppA is responsible for the maturation of the Flp prepilin and belongs to the aspartic acid protease family. We also demonstrate that FppA is required for the assembly of cell surface appendages that we called Flp pili. Finally, we observed an Flp-dependent bacterial aggregation process on the epithelial cell surface and an increased biofilm phenotype linked to Flp pilus assembly.  相似文献   

16.
17.
The last gene (pulO) of the pulC-O pullulanase secretion gene operon of Klebsiella oxytoca codes for a protein that is 52% identical to the product of the pilD/xcpA gene required for extracellular protein secretion and type IV pilus biogenesis in Pseudomonas aeruginosa. The PilD/XcpA protein is known to remove the first six amino acids of the signal sequence of the type IV pilin precursor by cleaving after the glycine residue in the conserved sequence GF(M)XXXE (where X represents hydrophobic amino acids). This prepilin peptidase cleavage site is present in the products of four genes in the pulC-O operon (PulG, PulH, Pull and PulJ proteins). It is shown here that PulO processes the pulG gene product in vivo. Processing was maximal within 15 seconds, but experiments in which the expression of pulO was uncoupled from that of the other genes in the secretion operon suggest that processing can also occur post-translationally. The products of two pulG derivatives with internal inframe deletions were also processed by PulO, but the three PulG-PhoA hybrids, two PulJ-PhoA hybrids and the single PulH-PhoA hybrid tested did not appear to be processed. Sucrose gradient fraction experiments showed that both precursor and mature forms of PulG appear to be associated with low-density, outer membrane vesicles prepared by osmotic lysis of sphaeroplasts. Neither the xcpA gene nor the Bacillus subtilis gene comC, which is also homologous to pulO and codes for a protein with type IV prepilin peptidase activity, can correct the pullulanase secretion defect in an Escherichia coli strain carrying all of the genes required for secretion except pulO. Furthermore, neither XcpA nor ComC is able to process prePulG protein in vivo.  相似文献   

18.
Biogenesis of a superfamily of surface structures by gram-negative bacteria requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway a periplasmic chaperone works together with an outer membrane usher to direct substrate folding, assembly, and secretion to the cell surface. We analyzed the structure and function of the PapC usher required for P pilus biogenesis by uropathogenic Escherichia coli. Structural analysis indicated PapC folds as a beta-barrel with short extracellular loops and extensive periplasmic domains. Several periplasmic regions were localized, including two domains containing conserved cysteine pairs. Functional analysis of deletion mutants revealed that the PapC C terminus was not required for insertion of the usher into the outer membrane or for proper folding. The usher C terminus was not necessary for interaction with chaperone-subunit complexes in vitro but was required for pilus biogenesis in vivo. Interestingly, coexpression of PapC C-terminal truncation mutants with the chromosomal fim gene cluster coding for type 1 pili allowed P pilus biogenesis in vivo. These studies suggest that chaperone-subunit complexes target an N-terminal domain of the usher and that subunit assembly into pili depends on a subsequent function provided by the usher C terminus.  相似文献   

19.
Methanococcus voltae is a flagellated member of the Archaea. Four highly similar flagellin genes have previously been cloned and sequenced, and the presence of leader peptides has been demonstrated. While the flagellins of M. voltae are predicted from their gene sequences to be approximately 22 to 25 kDa, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified flagella revealed flagellin subunits with apparent molecular masses of 31 and 33 kDa. Here we describe the expression of a M. voltae flagellin in the bacteria Escherichia coli and Pseudomonas aeruginosa. Both of these systems successfully generated a specific expression product with an apparently uncleaved leader peptide migrating at approximately 26.5 kDa. This source of preflagellin was used to detect the presence of preflagellin peptidase activity in the membranes of M. voltae. In addition to the native flagellin, a hybrid flagellin gene containing the sequence encoding the M. voltae FlaB2 mature protein fused to the P. aeruginosa pilin (PilA) leader peptide was constructed and transformed into both wild-type P. aeruginosa and a prepilin peptidase (pilD) mutant of P. aeruginosa. Based on migration in SDS-PAGE, the leader peptide appeared to be cleaved in the wild-type cells. However, the archaeal flagellin could not be detected by immunoblotting when expressed in the pilD mutant, indicating a role of the peptidase in the ultimate stability of the fusion product. When the +5 position of the mature flagellin portion of the pilin-flagellin fusion was changed from glycine to glutamic acid (as in the P. aeruginosa pilin) and expressed in both wild-type and pilD mutant P. aeruginosa, the product detected by immunoblotting migrated slightly more slowly in the pilD mutant, indicating that the fusion was likely processed by the prepilin peptidase present in the wild type. Potential assembly of the cleaved fusion product by the type IV pilin assembly system in a P. aeruginosa PilA-deficient strain was tested, but no filaments were noted on the cell surface by electron microscopy.  相似文献   

20.
Aeromonas salmonicida expresses a large number of proven and suspected virulence factors including bacterial surface proteins, extracellular degradative enzymes, and toxins. We report the isolation and characterization of a 4-gene cluster, tapABCD, from virulent A. salmonicida A450 that encodes proteins homologous to components required for type IV pilus biogenesis. One gene, tapA, encodes a protein with high homology to type IV pilus subunit proteins from many gram-negative bacterial pathogens, including Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio vulnificus. A survey of A. salmonicida isolates from a variety of sources shows that the tapA gene is as ubiquitous in this species as it is in other members of the Aeromonads. Immunoblotting experiments demonstrate that it is expressed in vitro and is antigenically conserved among the A. salmonicida strains tested. A mutant A. salmonicida strain defective in expression of TapA was constructed by allelic exchange and found to be slightly less pathogenic for juvenile Oncorhynchus mykiss (rainbow trout) than wild type when delivered by intraperitoneal injection. In addition, fish initially challenged with a high dose of wild type were slightly more resistant to rechallenge with wild type than those initially challenged with the tapA mutant strain, suggesting that presence of TapA contributes to immunity. Two of the other three genes identified, tapB and tapC, encode proteins with homology to factors known to be required for type IV pilus assembly in P. aeruginosa, but in an as yet unidentified manner. TapB is a member of the ABC-transporter family of proteins that contain characteristic nucleotide-binding regions, and which may provide energy for type IV pilus assembly through the hydrolysis of ATP. TapC homologs are integral cytoplasmic membrane proteins that may play a role in pilus anchoring or initiation of assembly. The fourth gene, tapD, encodes a product that shares homology with a family of proteins with a known biochemical function, namely, the type IV prepilin leader peptidases. These bifunctional enzymes proteolytically cleave the leader peptide from the pilin precursor (prepilin) and then N-methylate the newly exposed N-terminal amino acid prior to assembly of the subunits into the pilus structure. We demonstrate that A. salmonicida TapD is able to restore type IV pilus assembly and type II secretion in a P. aeruginosa strain carrying a mutation in its type IV peptidase gene, suggesting that it plays the same role in A. salmonicida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号