首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H2 as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 × 107 cells per ml after compete reduction of 2.0 mM amaranth in a defined medium. This was accompanied by a stoichiometric consumption of 4.0 mM formate over time when amaranth and formate were supplied as the sole electron acceptor and donor, respectively, suggesting that microbial azoreduction is an electron transport process and that this electron transport can yield energy to support growth. Purified membranous, periplasmic, and cytoplasmic fractions from S12 were analyzed, but only the membranous fraction was capable of reducing azo dyes with formate, lactate, pyruvate, or H2 as the electron donor. The presence of 5 μM Cu2+ ions, 200 μM dicumarol, 100 μM stigmatellin, and 100 μM metyrapone inhibited anaerobic azoreduction activity by both whole cells and the purified membrane fraction, showing that dehydrogenases, cytochromes, and menaquinone are essential electron transfer components for azoreduction. These results provide evidence that the microbial anaerobic azoreduction is linked to the electron transport chain and suggest that the dissimilatory azoreduction is a form of microbial anaerobic respiration. These findings not only expand the number of potential electron acceptors known for microbial energy conservation but also elucidate the mechanisms of microbial anaerobic azoreduction.  相似文献   

2.
The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H(2) as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 x 10(7) cells per ml after compete reduction of 2.0 mM amaranth in a defined medium. This was accompanied by a stoichiometric consumption of 4.0 mM formate over time when amaranth and formate were supplied as the sole electron acceptor and donor, respectively, suggesting that microbial azoreduction is an electron transport process and that this electron transport can yield energy to support growth. Purified membranous, periplasmic, and cytoplasmic fractions from S12 were analyzed, but only the membranous fraction was capable of reducing azo dyes with formate, lactate, pyruvate, or H(2) as the electron donor. The presence of 5 microM Cu(2+) ions, 200 microM dicumarol, 100 microM stigmatellin, and 100 microM metyrapone inhibited anaerobic azoreduction activity by both whole cells and the purified membrane fraction, showing that dehydrogenases, cytochromes, and menaquinone are essential electron transfer components for azoreduction. These results provide evidence that the microbial anaerobic azoreduction is linked to the electron transport chain and suggest that the dissimilatory azoreduction is a form of microbial anaerobic respiration. These findings not only expand the number of potential electron acceptors known for microbial energy conservation but also elucidate the mechanisms of microbial anaerobic azoreduction.  相似文献   

3.
摘要:【目的】对脱色希瓦氏菌S12 (Shewanella decolorationis S12)的acpD基因(登录号EF198254)及其表达活性进行研究。【方法】采用DNAMAN软件对该基因进行序列分析。利用PCR技术克隆含原有启动子的目的基因,与pGM-T载体连接后转化仅有微弱偶氮还原活性的大肠杆菌TOP10(Escherichia coli TOP10)中进行表达。通过分光光度法测定偶氮染料的还原活性。【结果】序列分析表明,该基因编码198个氨基酸残基组成的多肽,与希瓦氏菌ANA-3(Shewa  相似文献   

4.
Shewanella decolorationis S12 was able to reduce various azo dyes in a defined medium with formate, lactate, and pyruvate or H2 as electron donors under anaerobic conditions. Purified membranous, periplasmic, and cytoplasmic fractions from strain S12 analyzed, respectively, only membranous fraction was capable of reducing azo dye in the presence of electron donor, indicating that the enzyme system for anaerobic azoreduction was located on cellular membrane. Respiratory inhibitor Cu2+, dicumarol, stigmatellin, and metyrapone inhibited anaerobic azoreduction by purified membrane fraction, suggesting that the bacterial anaerobic azoreduction by strain S12 was a biochemical process that oxidizes the electron donors and transfers the electrons to the acceptors through a multicompound system related to electron transport chain. Dehydrogenases, cytochromes, and menaquinones were essential electron transport components for the azoreduction. The electron transport process for azoreduction was almost fully inhibited by O2, 6 mM of , and 0.9 mM of , but not by 10 mM of Fe3+. The inhibition may be a result from the competition for electrons from electron donors. These findings impact on the understanding of the mechanism of bacterial anaerobic azoreduction and have implication for improving treatment methods of wastewater contaminated by azo dyes.  相似文献   

5.
Aim: To investigate the role of soluble and insoluble iron in azoreduction by resting cells of Shewanella decolorationis S12. Methods and Results: A series of analytical experiments were carried out. Results showed that insoluble Fe2O3 all delayed the reduction of amaranth but did not inhibit it. Adsorption to Fe2O3 particles by the bacterial cell surface could be the reason leading to the delay in azoreduction. For the soluble iron, an important finding was that azoreduction activities were inhibited by soluble iron in high concentration because of its higher redox potential, and the inhibition was strengthened when the electron donor supply was insufficient. However, activities of azoreduction could be enhanced by low concentration of soluble iron. This stimulating effect was because of the electron transfer but not the cell growth. Conclusions: The effects of iron on azoreduction by the resting cells depended on the solubility and concentration of the iron compounds, which was different from what was observed by the growing cells in the previous studies. Significance and Impact of the Study: This study has both theoretical significance in the microbial physiology and practical significance in the bioremediation of azo dyes‐contaminated environment.  相似文献   

6.
Physiologically distinct facultative anaerobic microorganisms were isolated and investigated for their ability to oxidize different substrates with azo compounds as a terminal electron acceptor. Four strains of dissimilatory azoreducing bacteria (DARBs), isolated from activated sludge of a textile-printing wastewater treatment plant, could reduce azo compound by coupling oxidation of several of electron donors. Different strains preferred specific electron donor for azoreduction, such as hydrogen, formate or lactate. Evolutionary relationships among these DARBs were examined by phylogenetic analysis of 16S rDNA sequences. Members of the genera Citrobacter (AzoR-1), Acinetobacter (AzoR-3), and Pseudomonas (AzoR-9) formed a monophyletic group within the gamma subdivision of the class Proteobacteria, which was closely related to the member of the previously described Shewanella decolorationnis S12 that obtained its energy for growth by dissimilatory azoreduction process. The genus Bacillus (AzoR-6) made up a distinct branch within the Firmicutes cluster. The results of this study expanded the limited number of microbial isolates that are known to be capable of dissimilatory azoreduction and demonstrated that the ubiquity of azoreduction coupling with hydrogen or organic acids as an electron donor.  相似文献   

7.
Shewanella decolorationis S12, a representative dissimilatory azo-reducing bacterium of Shewanella genus, can grow by coupling the oxidation of hydrogen to the reduction of azo compounds as the sole electron acceptor, indicating that an uptake hydrogenase is an important component for electron transfer for azoreduction. For searching to the uptake hydrogenase in the genome of S. decolorationis, two operons, hyd and hya, were cloned and sequenced, which encode periplasmically oriented Fe-only hydrogenase and a Ni-Fe hydrogenase, respectively, according to the homologous comparison with other bacterial hydrogenases. In order to assess the roles of these two enzymes in hydrogen-dependent azoreduction and growth, hyd- and hya-deficient mutants were generated by gene replacement. Hya was found to be required for hydrogen-dependent reduction of azo compound by resting cell suspensions and to be essential for growth with hydrogen as electron donor and azo compound as electron acceptor. Hyd, in contrast, was not. These findings suggest that Hya is an essential respiratory hydrogenase of dissimilatory azoreduction in S. decolorationis.  相似文献   

8.
It has been found that the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T produces a larger amount of soluble c-type cytochromes at pH 10.0 under air-limited condition than at pH 7.0 under high aeration. Cytochrome c-552 was confirmed as the major c-type cytochrome among three soluble c-type cytochromes in the strain. To understand the physiological function of cytochrome c-552, a P. alcaliphila AL15-21T cytochrome c-552 gene deletion mutant without a marker gene was constructed by electrotransformation adjusted in this study for the strain. The maximum specific growth rate and maximum cell turbidity of cells grown at pHs 7.0 and 10.0 under the high-aeration condition did not differ significantly between the wild-type and cytochrome c-552 deletion mutant strains. In the mutant grown at pH 10.0 under low-aeration condition, marked decreases in the maximum specific growth rate (40%) and maximum cell turbidity (25%) compared with the wild type were observed. On the other hand, the oxygen consumption rates of cell suspensions of the mutant obtained by the growth at pH 10 under low-aeration condition were slightly higher than that of the wild type. Considering the high electron-retaining ability of cytochrome c-552, the above observations could be accounted for by cytochrome c-552 acting as an electron sink in the periplasmic space. This may facilitate terminal oxidation in the respiratory system at high pH under air-limited conditions.  相似文献   

9.
Rates of oxygen utilization by Pseudomonas putida respiratory particles were measured using the electron donors, reduced nicotinamide adenine dinucleotide (NADH) and succinate, and the oxidation-reduction dyes, 2,6-dichlorophenolindophenol and N,N,N′,N′-tetramethyl-p-phenylenediamine. The maximal rates produced by NADH and succinate were similar for particles from either log- or stationary-phase cells, but rates measured using the dyes were much higher in stationary-phase particles. Cyanide and azide were very effective inhibitors of dye oxidation in both cases, but they produced only partial inhibition of NADH and succinate oxidation in log-phase particles and had no effect in the stationary phase. Spectral examination of the cytochromes at several levels of reduction produced by the various electron donors and inhibitors indicated that most of the cytochromes that were reduced by the dyes lie on a cyanide sensitive pathway of electron transport. These findings support the hypothesis that P. putida produces an electron transport system in the stationary phase which involves branching at the level of the cytochromes.Inhibition of oxygen utilization by CO was nearly complete for all four substrates in logphase particles. Inhibition was also reasonably effective for dye oxidation in the stationary phase, but there was no effect on NADH or succinate oxidation. Photochemical action spectra of the relief of CO inhibition revealed that NADH and succinate oxidation in log-phase particles probably involves cytochrome o. Oxidation of the dyes by either type of particles also appeared to involve cytochrome o, and the possibility of the participation of an a- or d-type cytochrome was also indicated.  相似文献   

10.
Aeromonas hydrophila ATCC 7966 grew anaerobically on glycerol with nitrate, fumarate, Fe(III), Co(III), or Se(VI) as the sole terminal electron acceptor, but did not ferment glycerol. Final cell yields were directly proportional to the amount of terminal electron acceptor provided. Twenty-four estuarine mesophilic aeromonads were isolated; all reduced nitrate, Fe(III), or Co(III), and five strains reduced Se(VI). Dissimilatory Fe(III) reduction by A. hydrophila may involve cytochromes. Difference spectra obtained with whole cells showed absorption maxima at wavelengths characteristic of c-type cytochromes (419, 522, and 553 nm). Hydrogen-reduced cytochromes within intact cells were oxidized by the addition of Fe(III) or nitrate. Studies with respiratory inhibitors yielded results consistent with a respiratory chain involving succinate (flavin-containing) dehydrogenase, quinones and cytochromes, and a single Fe(III) reductase. Neither anaerobic respiration nor dissimilatory metal reduction by members of the genus Aeromonas have been reported previously. Received: 24 June 1997 / Accepted: 20 October 1997  相似文献   

11.
The homoacetogenic bacteria Sporomusa ovata and Sporomusa sphaeroides were grown on betaine, betaine + formate, and acetoin in the absence of carbon dioxide, and the formation of membrane-bound cytochromes was determined. In S. sphaeroides, the growth substrate had little influence on the expression of cytochromes. In contrast, membranes from betaine-or acetoin-grown S. ovata cells had an 11-or 3-fold higher cytochrome b content than cells grown on betaine + formate. The cytochrome c content was reduced below the detection level after growth on the latter two substrates. The cytochromes in the membranes of S. sphaeroides and S. ovata were characterized by low-temperature difference spectroscopy, hemochrome difference spectroscopy, and redox potentiometry. Membranes of S. ovata were shown to contain two b-type cytochromes with Em,7=-153±10 mV and Em,7=-226±14 mV and two c-type cytochromes with Em,7=-86±6 mV and Em,7=-265±10 mV. In S. sphaeroides also two b-type cytochromes with Em,7=-165±7 mV and Em,7=-241±2 mV and two c-type cytochromes with Em,7=-101±4 mV and Em, 8.5=-338±9 mV could be distinguished. Cell extracts of S. sphaeroides were shown to contain all the enzymes of the acetyl-CoA (Wood) pathway. The degradation pathways of the substrates tested and the possible role of the cytochromes are discussed.Abbreviations Em,7 midpoint potential at pH 7 and 25°C - H4F tetrahydrofolate  相似文献   

12.
Exoelectrogens play the core roles in bioelectrochemical systems (BESs) because of their unique extracellular electron transfer capacity to different electron acceptors. Microbial reduction of azo dyes by exoelectrogens under anaerobic conditions has received great attention because of its eco-friendliness, low cost, and unique extracellular reduction ability. In this work, we unexpectedly found that Shewanella putrefaciens CN-32 adopted a distinctive electron transfer mechanism for bioreduction of MO (methyl orange) compared to the other exoelectrogens. MO reduction by S. putrefaciens CN-32 occurred through mechanisms that were not dependent on the known azoreductase and the Mtr (metal-reducing) respiratory pathway. Some anaerobic regulators (e.g., Fur and EtrA) and periplasmic c-type cytochromes (Sputcn32_2333) might involve in MO reduction by S. putrefaciens CN-32. The major reduction products were 4-aminobenzenesulfonic acid (4-ABA) and N, N-dimethyl-p-phenylenediamine (DPD) and the initial cell density in the reduction system affected MO reduction kinetics by S. putrefaciens CN-32. Moreover, S. putrefaciens CN-32 could utilize multiple mediators such as flavins or anthraquinone-2,6-sodium disulfonate (AQDS) to accelerate MO reduction. Our findings provide a new perspective on the reduction mechanisms of azo dyes by exoelectrogens and might facilitate more efficient utilization of them in BESs for treatments of azo dyes-polluted industrial effluents.  相似文献   

13.
This study investigated the physiological impact of changing electron donor–acceptor ratios on electron transfer pathways in the metabolically flexible subsurface bacterium Shewanella oneidensis, using batch and chemostat cultures, with an azo dye (ramazol black B) as the model electron acceptor. Altering the growth rate did result in changes in biomass yield, but not in other key physiological parameters including the total cytochrome content of the cells, the production of extracellular flavin redox shuttles or the potential of the organism to reduce the azo dye. Dramatic increases in the ability to reduce the dye were noted when cells were grown under conditions of electron acceptor (fumarate) limitation, although the yields of extracellular redox mediators (flavins) were similar under conditions of electron donor (lactate) or acceptor limitation. FT-IR spectroscopy confirmed shifts in the metabolic fingerprints of cells grown under these contrasting conditions, while spectrophotometric analyses supported a critical role for c-type cytochromes, expressed at maximal concentrations under conditions of electron acceptor limitation. Finally, key intracellular metabolites were quantified in batch experiments at various electron donor and acceptor ratios and analysed using discriminant analysis and a Bayesian network to construct a central metabolic pathway model for cells grown under conditions of electron donor or acceptor limitation. These results have identified key mechanisms involved in controlling electron transfer in Shewanella species, and have highlighted strategies to maximise reductive activity for a range of bioprocesses.  相似文献   

14.
Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.  相似文献   

15.
(1) The electron transport system of heterotrophically dark-grown Rhodobacter capsulatus was investigated using the wild-type strain MT1131 and the phototrophic non-competent (Ps-) mutant MT-GS18 carrying deletions of the genes for cytochrome c 1 and b of the bc 1 complex and for cytochrome c 2. (2) Spectroscopic and thermodynamic data demonstrate that deletion of both bc 1 complex and cyt. c 2 still leaves several haems of c- and b-type with Em7.0 of +265 mV and +354 mV at 551–542 nm, and +415 mV and +275 mV at 561–575 nm, respectively. (3) Analysis of the oxidoreduction kinetic patterns of cytochromes indicated that cyt. b 415 and cyt. b 275 are reduced by either ascorbate-diaminodurene or NADH, respectively. (4) Growth on different carbon and nitrogen sources revealed that the membrane-bound electron transport chain of both MT1131 and MT-GS18 strains undergoes functional modifications in response to the composition of the growth medium used. (5) Excitation of membrane fragments from cells grown in malate minimal medium by a train of single turnover flashes of light led to a rapid oxidation of 32% of the membrane-bound c-type haem complement. Conversely, membranes prepared from peptone/yeast extract grown cells did not show cyt. c photooxidation. These results are discussed within the framework of an electron transport chain in which alternative pathways bypassing both the cyt. c 2 and bc 1 complex might involve high-potential membrane bound haems of b- and c-type.Abbreviations AA antimycin A - CCCP carbonylcyanide m-chlorophenyl hydrazone - CN- cyanide - DAD diaminodurene - Q2H2 ubiquinol-2 - Q-pool ubiquinone-10 pool - RC photochemical reaction center  相似文献   

16.
The biosynthesis of bacterial and plastidic c-type cytochromes includes several steps that occur post-translationally. In the case of bacterial cytochromes, the cytosolically synthesized pre-proteins are translocated across the cytoplasmic membrane, the pre-proteins are cleaved to their mature forms and heme is ligated to the processed apoprotein. Although heme attachment has not been studied extensively at the biochemical level, molecular genetic approaches suggest that the reaction generally occurs after translocation of the apoprotein to the periplasm. Recent studies with Bradyrhizobium japonicum and Rhodobacter capsulatus indicate that the process of heme attachment requires the function of a large number of genes. Mutation of these genes generates a pleiotropic deficiency in all c-type cytochromes, suggesting that the gene products participate in processes required for the biosynthesis of all c-type cytochromes. In eukaryotic cells, the biosynthesis of photosynthetic c-type cytochromes is somewhat more complex owing to the additional level of compartmentation. Nevertheless, the basic features of the pathway appear to be conserved. For instance, as is the case in bacteria, translocation and processing of the pre-proteins is not dependent on heme attachment. Genetic analysis suggests that the nuclear as well as the plastid genomes encode functions required for heme attachment, and that these genes function in the biosynthesis of the membrane-associated as well as the soluble c-type cytochrome of chloroplasts. A feature of cytochromes c biogenesis that appears to be conserved between chloroplasts and mitochondria is the sub-cellular location of the heme attachment reaction (p-side of the energy transducing membrane). Continued investigation of all three experimental systems (bacteria, chloroplasts, mitochondria) is likely to lead to a greater understanding of the biochemistry of cytochrome maturation as well as the more general problem of cofactor-protein association during the assembly of an energy transducing membrane.Abbreviations CCHL cytochrome c/heme lyase - CC1HL cytochrome cl/heme lyase - cyt cytochrome - EMS ethyl methane sulphonate - n-side electrochemically negative side of an energy transducing membrane - p-side electrochemically positive side of an energy transducing membrane - PhoA alkaline phosphatase (encoded by the phoA locus)  相似文献   

17.
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3ʹ-5ʹ) cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.  相似文献   

18.
Summary Permeabilization of cells of B. cereus and other bacterial strains by toluene treatment significantly increased the passage of sulfonated and carboxylated azo dyes from the external medium into the cells with a concomittant increase of the reduction rate of the dyes. Dyes which are not reduced at all by intact cells were readily decolorized. The reduction rate of sulfonated compounds was consistently larger than of their carboxylated analogues, once the dyes had entered the cells.  相似文献   

19.
Shewanella decolorationis S12 is capable of carrying out anaerobic respiration using azo dyes and Fe (III) citrate as electron acceptors. In the present study, proteomic techniques including two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry were used to analyze the similarity and the dissimilarity of the membrane proteins isolated from strain S12 cells grown in amaranth or Fe (III) citrate with defined inorganic salt medium. The cells of strain S12 grown under a saturated dissolved oxygen condition served as controls. This is the first work that made the comparative analysis of cell membranous proteomics of strain S12 grown with azo compound or Fe (III) citrate as a sole terminal electron acceptor. The results showed that most of the membrane proteins of strain S12 under azo respiration are similar to those under Fe (III) respiration, but dissimilar from those of oxygen-grown cells. FdnH and FrdB were expressed specifically in azo respiration. NqrA-2, DctP, and hypothetical protein SO_4719 showed relative overexpression in azo respiration compared with Fe (III) respiration. OmpA family protein SO_3545 was detected to be specific to Fe (III) respiration. Furthermore, ArgF, SdhA, and HoxK were expressed markedly in both amaranth- and Fe (III) citrate-grown cultures compared with oxygen-grown cultures.  相似文献   

20.
The potential for humic substances to serve as terminal electron acceptors in microbial respiration and the effects of humic substances on microbial azoreduction were investigated. The dissimilatory azoreducing microorganism Shewanella decolorationis S12 was able to conserve energy to support growth from electron transport to humics coupled to the oxidation of various organic substances or H2. Batch experiments suggested that when the concentration of anthraquinone-2-sulfonate (AQS), a humics analog, was lower than 3 mmol/l, azoreduction of strain S12 was accelerated under anaerobic condition. However, there was obvious inhibition to azoreduction when the concentration of the AQS was higher than 5 mmol/l. Another humics analog, anthraquinone-2-sulfonate (AQDS), could still prominently accelerate azoreduction, even when the concentration was up to 12 mmol/l, but the rate of acceleration gradually decreased with the increasing concentration of the AQDS. Toxic experiments revealed that AQS can inhibit growth of strain S12 if the concentration past a critical one, but AQDS had no effect on the metabolism and growth of strain S12 although the concentration was up to 20 mmol/l. These results demonstrated that a low concentration of humic substances not only could serve as the terminal electron acceptors for conserving energy for growth, but also act as redox mediator shuttling electrons for the anaerobic azoreduction by S. decolorationis S12. However, a high concentration of humic substances could inhibit the bacterial azoreduction, resulting on the one hand from the toxic effect on cell metabolism and growth, and on the other hand from competion with azo dyes for electrons as electron acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号