首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3   总被引:3,自引:0,他引:3  
Primary cultures of neonatal human foreskin keratinocytes converted 25-hydroxyvitamin D in high yield to a metabolite with the chromatographic behavior of 1,25-dihydroxyvitamin D3. The identity of this metabolite as 1,25-dihydroxyvitamin D3 was confirmed both by its potency in displacing 1,25-dihydroxyvitamin D3 in the chick cytosol receptor assay and by mass spectral analysis. These results suggest that 1,25-dihydroxyvitamin D3 may be formed in the epidermis to regulate vitamin D production by the epidermis and to provide an alternative to 1,25-dihydroxyvitamin D3 production by the kidneys.  相似文献   

3.
4.
Concentrations of intestinal 1,25-dihydroxyvitamin D receptor were measured in rats receiving pharmacological amounts (25,000 IU/rat daily for 6 days) of either vitamin D2 or vitamin D3. The data showed that both hypervitaminosis D2 and hypervitaminosis D3 resulted in significant up-regulation of intestinal 1,25-dihydroxyvitamin D receptor (fmol/mg protein) relative to controls (409 +/- 24, vitamin D2-treated; 525 +/- 41, vitamin D3-treated; and 249 +/- 19, control). The 1,25-dihydroxyvitamin D receptor enhancement also was accompanied by elevated plasma 25-hydroxyvitamin D and hypercalcemia. These data suggest that increased target-tissue 1,25-dihydroxyvitamin D receptor may play a role in enhancing target-tissue responsiveness and, thus, have a significant role in mediating the toxic effects of hypervitaminosis D.  相似文献   

5.
An immunoradiometric assay for 1,25-dihydroxyvitamin D3 receptor   总被引:8,自引:0,他引:8  
A ligand-independent, quantitative assay has been developed for the measurement of 1,25-dihydroxyvitamin D receptor utilizing purified receptor from pig intestine as a standard and two high affinity monoclonal antibodies directed to two different epitopes on the receptor. In this assay a fixed amount of 125I-labeled antibody is incubated with a fixed amount of a second antireceptor antibody linked to biotin and increasing amounts of purified receptor protein or sample. Antibody-receptor complexes can then be immunoprecipitated with avidin-Sepharose beads and counted. This method is highly reproducible and can detect 150 pg of 1,25-dihydroxyvitamin D3 receptor in crude extracts with intra- and interassay coefficients of variation of 8.6 and 18.2%. The monoclonal antibodies used recognize both native and denatured receptors from several different species, including human. This immunoradiometric assay should prove useful for studies of receptor regulation, occupancy, distribution, and turnover.  相似文献   

6.
Studies from many laboratories have reported apparent molecular weights for the chick intestinal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] receptor varying from 47,000 to 67,000 daltons. We report here that in the presence of the protease inhibitor phenylmethylsulfonyl fluoride (PMSF, 0.3 mM) and in the presence or absence of ligand, the apparent molecular weight of the receptor is 99,700 ± 9,400 (SD) daltons (as determined by gel filtration). In the absence of PMSF, however, the unoccupied receptor migrates with an apparent molecular weight of 51,400 ± 5,700 (SD) daltons. This smaller form of the 1,25(OH)2D3 receptor, upon incubation with [3H]-1,25(OH)2D3 in the presence of PMSF, then migrates with an apparent molecular weight of 95,900 ± 7,300 (SD) daltons. These results suggest the presence of heretofore unappreciated multiple molecular forms of the chick intestinal 1,25(OH)2D3 receptor.  相似文献   

7.
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system.  相似文献   

8.
9.
Evidence is presented here that organomercurial binding to a reactive sulfhydryl group is capable of altering the DNA-binding characteristics of the 1,25-dihydroxyvitamin D receptor (D-receptor). Accordingly, hormone-free receptor (Ro) binding to DNA-cellulose is inhibited in a concentration-dependent fashion with both HgCl2 and p-chloromercuribenzene sulfonate (pCMBS) with complete inhibition evident at 1.0 mM. Further, low concentrations (0.5 mM) of mercurials are also capable of dissociating preformed DNA-receptor complexes, a process reversible with excess thiol reagent such as monothioglycerol. These findings are in contrast to alkylating reagents such as iodoacetamide, which is capable of only partially inhibiting the formation of the receptor-DNA duplex (37% at 25 mM). Once created, however, the duplex is completely insensitive to dissociation (even at 25 mM). These results imply that in addition to the association of a cysteine(s) moiety in or near the sterol binding site, modification of a similarly reactive group(s) can also alter the D-receptor's DNA-binding domain.  相似文献   

10.
A new metabolite of 23,25-dihydroxyvitamin D3 has been generated with kidney homogenates prepared from vitamin D treated chicks. The metabolite was purified with three high-performance liquid chromatographic steps and was identified as 23-keto-25-hydroxyvitamin D3 by ultraviolet absorption spectroscopy, mass spectrometry, and chemical reactivity. The R stereoisomer of 23,25-dihydroxyvitamin D3 was 10-fold more effective as an in vitro precursor to 23-keto-25-hydroxyvitamin D3 than was the naturally occurring S stereoisomer. Approximately 500 ng of 23-keto-25-hydroxyvitamin D3 was necessary to produce the same degree of intestinal-calcium transport as 25 ng of vitamin D3--a difference of about 20-fold. 23-Keto-25-hydroxyvitamin D3 was not active at stimulating bone calcium resorption at the doses and times tested. This new vitamin D3 metabolite, however, had greater affinity than 25-hydroxyvitamin D3 to both the rat plasma vitamin D binding protein and the 1,25-dihydroxyvitamin D specific cytosol receptor. Heretofore, only 1 alpha-hydroxylated metabolites of 25-hydroxyvitamin D3 or analogues possessing a pseudo 1 alpha-hydroxy group were known to bind to the 1,25-dihydroxyvitamin D receptor with higher affinity than 25-hydroxyvitamin D3. Ketone formation at the 23 position, therefore, is the first side-chain modification of 25-hydroxyvitamin D3 that results in enhanced binding to the 1,25-dihydroxyvitamin D receptor binding protein.  相似文献   

11.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) from its precursor, 25-dihydroxyvitamin D(3) (25(OH)D(3)), is catalyzed by the mitochondrial cytochrome P450 enzyme 25-hydroxyvitamin D(3)-1alpha-hydroxylase (1alpha-hydroxylase). It has been generally assumed that 1,25(OH)(2)D(3) inhibits the activity of this enzyme by regulating its expression at the genomic level. We confirmed that 1,25(OH)(2)D(3) reduced the apparent conversion of 25(OH)D(3) to 1,25(OH)(2)D(3) while stimulating the conversion of 1,25(OH)(2)D(3) and 25(OH)D(3) to 1,24,25(OH)(3)D(3) and 24,25(OH)(2)D(3), respectively. However, 1,25(OH)(2)D(3) failed to reduce the abundance of its mRNA or its encoded protein in human keratinocytes. Instead, when catabolism of 1,25(OH)(2)D(3) was blocked with a specific inhibitor of the 25-hydroxyvitamin D(3)-24-hydroxylase (24-hydroxylase) all apparent inhibition of 1alpha-hydroxylase activity by 1,25(OH)(2)D(3) was reversed. Thus, the apparent reduction in 1alpha-hydroxylase activity induced by 1,25(OH)(2)D(3) is due to increased catabolism of both substrate and product by the 24-hydroxylase. We believe this to be a unique mechanism for autoregulation of steroid hormone synthesis.  相似文献   

12.
13.
Adult rat testis contains a specific, high-affinity, low-capacity binding protein for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) with properties similar to 1,25-(OH)2D3 receptors in other tissues. The receptor sediments at 3.5 +/- 0.2 S20,w in high-salt sucrose density gradients, but aggregates in low-salt gradients. Binding of 1,25-(OH)2D3 was abolished by trypsin, but not by DNase or RNase. Binding was also heavily reduced by the sulfhydryl alkylating agent, N-ethylmaleimide, and by the mercurial reagent, mersalyl, showing that free, reduced SH-groups are necessary for hormone-binding activity. The receptor shows high affinity for 1,25-(OH)2D3 (Kd = 3 X 10(-11) M), but low capacity (Nmax = 8 fmol/mg protein) and is specific for 1,25-(OH)2D3 (Affinity: 1,25-(OH)2D3 greater than 1,24(R),25-(OH)3D3 greater than 25-OH-D3 greater than 1 alpha-OH-D3 greater than 24(R),25-(OH)2D3 much greater than 17 beta-estradiol, testosterone, dexamethasone, R5020, progesterone). With 0.6 nM [3H]1,25-(OH)2D3 and at 0 degrees C, maximum specific binding was achieved after 4 h, and the occupied receptors were stable for more than 24 h. The dissociation of hormone-receptor complexes was temperature-dependent and very slow at low temperature (t1/2 (0 degrees C) much greater than 48 h). At 0 degrees C, the second order association rate constant and the pseudo-first order dissociation rate constant were 2.7 X 10(7) M-1 min-1 and 2 X 10(-5) min-1, respectively. Receptors for 1,25-(OH)2D3 are present in similar amounts in isolated seminiferous tubules and interstitial tissue of adult rats. No specific binding of [3H]1,25-(OH)2D3 could be detected in cultured immature Sertoli cells, cultured immature peritubular (myoid) cells or crude germ cells.  相似文献   

14.
R P Link  H F DeLuca 《Steroids》1988,51(5-6):583-598
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)).  相似文献   

15.
16.
Summary The human vitamin D receptor mRNA expression in preconfluent human cultured keratinocytes was upregulated by treatment of these cells with 10−8 M 1,25(OH)2D3 for 24 hours. Additionally, human c-myc mRNA expression was decreased in a dose dependent manner by 1,25(OH)2D3 in both preconfluent and confluent cultured human keratinocytes.  相似文献   

17.
Ketoconazole (an inhibitor of vitamin D-24 hydroxylase) was used to study the role of self-induced 1,25-dihydroxyvitamin D3 (1,25-D3) metabolism on cellular responsiveness to 1,25-D3. Eighteen hours of treatment with 1,25-dihydroxy-[26,27-methyl-3H]vitamin D3 (1,25-[3H]D3) increased total 1,25-D3 receptors (VDR) from 60 to 170 fmol mg/protein. In cells treated with both 1,25-[3H]D3 and ketoconazole, up-regulation of VDR was increased by 40% over that observed with cells receiving 1,25-[3H]D3 alone. Ketoconazole alone had no agonistic activity. Treatment of cells with 1 nM 1,25-[3H]D3 plus increasing doses of ketoconazole (0-30 microM) resulted in a dose-dependent increase in occupied VDR and total VDR. This up-regulation was associated with reduced 1,25-[3H]D3 catabolism. 1,25-[3H]D3-induced up-regulation of VDR typically peaked at 14 h and declined thereafter. Ketoconazole lengthened the time to reach peak VDR up-regulation to 20 h. The ability of ketoconazole to increase cell responsiveness (VDR up-regulation) was the result of both increased and prolonged occupancy of VDR by 1,25-[3H]D3. The t1/2 of occupied VDR was 2 h in the absence of ketoconazole and greater than 7 h when ketoconazole was present. Collectively, these results suggested that self-induced catabolism of 1,25-D3 is an important regulator of VDR occupancy and therefore cellular responsiveness to hormone. These data also demonstrate the usefulness of ketoconazole as an inhibitor of vitamin D hydroxylases in intact cells.  相似文献   

18.
The structural relationship between several lipids and their respective capacities to inhibit the specific binding of [3H]-1,25 (OH)2 vitamin D3 to chick intestinal cytosol preparations was investigated. The lipids investigated were: synthetic 3-sn-phosphatidylcholine and 3-sn-phosphatidic acid, egg yolk 3-sn-phosphatidylcholine and its corresponding phosphatidic acid, and free unsaturated fatty acids and their esters. The results indicate that at least three structural elements in the phospholipid molecule appear to be important; these are: 1) the structure of the fatty acid, 2) the anionic properties of the phospholipid phosphate group, and 3) the glycerol phosphate portion of the molecule. Our data also demonstrate that the position (1 or 2) and the amount (single vs. double) of unsaturated fatty acids in the phospholipid molecule do not play a major role in the receptor-1,25 (OH)2 vitamin D3 interaction. Furthermore, under equilibrium conditions, kinetic and Scatchard analysis suggest that phospholipids or free fatty acids may bind at a site different from the 1,25 (OH)2 vitamin D3 binding site, and therefore inhibit the hormone binding via a noncompetitive conformational change in the receptor molecule. A model for this phospholipid/free fatty acid binding site is proposed.  相似文献   

19.
Exposure of the 60 kDa chick intestinal 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptor to carboxypeptidase A resulted in a time dependent decrease in receptor hormone-binding; after 2 h, there was no detectable macro-molecular-bound 1,25(OH)2[3H]D3. Upon DNA-cellulose chromatography of this preparation, a 56 kDa protein adsorbed to the column and eluted as a function of para-chloromercuribenzene sulfonate (a sulfhydryl blocking reagent). The 56 kDa fragment was detected by anti-receptor monoclonal antibodies via immunoblot technology. The 1,25(OH)2[3H]D3 eluted in the fall through fractions of the column. Thus, cleavage of up to 40 amino acids from the carboxy-terminus of the 1,25(OH)2D3 receptor results in a protein which no longer binds to hormone, but retains its capacity to interact with DNA-cellulose and monoclonal antibody. These results represent novel biochemical evidence that allows us to orient the 1,25(OH)2D3 binding domain near the C-terminus of the receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号