首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A beta 2-microglobulin (beta 2m)-deficient variant of YAC-1, A.H-2-, was transfected with a genomic beta 2m clone. Transfected cells were used to investigate the role of beta 2m in IFN-induced protection from NK cell lysis. IFN-gamma treatment of the NK-sensitive murine YAC-1 lymphoma results in reduced sensitivity to NK cell-mediated lysis in parallel with increased expression of its constitutively low MHC class I expression. It was previously shown that the A.H-2- variant had lost both these capacities, although it retained other responses to IFN-gamma. Here beta 2m transfection restored the YAC-1 phenotype with respect to an inducible expression of MHC class I molecules and a concomitant protection from NK cell lysis after treatment with IFN-gamma. In the absence of IFN-gamma the NK sensitivity of the transfectants did not differ significantly from A.H-2-. A similar protection from NK cell lysis, in parallel with enhanced MHC class I expression, was observed for in vivo-passaged beta 2m transfectants whereas no protection was found for in vivo-passaged A.H-2- cells. The present study provides evidence that the IFN-gamma-mediated protection from NK cell lysis is dependent on beta 2m expression in the YAC-1 lymphoma. Restoration of MHC class I assembly, transport, and concomitantly an IFN-gamma augmentable cell surface expression of MHC class I molecules is a possible explanation for the effect of beta 2m.  相似文献   

2.
We have examined the requirement for beta 2-microglobulin (beta 2m) in the intracellular transport of murine class I histocompatibility molecules to the cell surface. R1E cells that are defective in the synthesis of beta 2m were transfected with either the class I H-2Kb or H-2Db genes alone, or together with the beta 2m gene. Kb or Db heavy chains synthesized in the presence of beta 2m were transported rapidly through the cell and expressed efficiently at the cell surface. In the absence of beta 2m, no "free" Kb heavy chains were detectable at the cell surface and their intracellular transport was blocked at an early stage. In contrast, a significant quantity of "free" Db heavy chains could be detected at the cell surface as we have reported previously. However, we have shown here that defects in intracellular transport were apparent in that the majority (approximately 70%) of newly synthesized Db heavy chains accumulated intracellularly and were degraded. Therefore, although Kb and Db heavy chains differ in their abilities to be expressed at the cell surface in the absence of beta 2m they both require association with beta 2m for efficient intracellular transport. In addition, R1E cells transfected with a deletion construct of the Kb gene expressed a truncated molecule lacking the alpha 3 extracellular domain (Kb-3) at the cell surface, but, like free Db, most newly synthesized Kb-3 molecules accumulated intracellularly. The free Kb, Kb-3, and Db heavy chains were not recognized by most mAb specific for Kb and Db, respectively. Therefore, even the transported forms of free Db and Kb-3 were not native in conformation, which is surprising given the current view that correct folding is essential for intracellular transport. Interestingly, the free Db and Kb-3 heavy chains that reached the cell surface differed in their detergent binding properties from those retained within the cell. This suggests that the transported heavy chains may have folded differently thus allowing their export to the cell surface.  相似文献   

3.
We have examined the roles of peptide and beta 2-microglobulin (beta 2m) in regulating the conformation and expression level of class I molecules on the cell surface. Using a cell line synthesizing H-2Dd H chain and mouse beta 2m but defective in endogenous peptide loading, we demonstrate the ability of either exogenous peptide or beta 2m alone to increase surface H-2Dd expression at both 25 degrees C and 37 degrees C. Peptide and beta 2m show marked synergy in their abilities to increase surface class I expression, with minimal increases promoted by peptide in the absence of free beta 2m. Low temperature-induced molecules have indistinguishable rates of loss of beta 2m and alpha 1/alpha 2 domain conformational epitopes during culture at 37 degrees C. However, the rate of alpha 3 epitope loss is much slower, indicating a minimum of two steps in class I loss from the cell surface: 1) loss of beta 2m binding to H chain and unfolding of the alpha 1/alpha 2 region; then 2) denaturation, degradation, or internalization of the free H chains possessing alpha 3 epitopes. These data show for the first time that free H chains survive for a finite time on the membrane in a form capable of refolding into alpha 1/alpha 2 epitope positive molecules upon addition of beta 2m and peptide. This refolding in the presence of beta 2m and peptide can explain the reported requirement for both components in sensitizing cells for class I-dependent CTL lysis. It also indicates that such conformational changes in class I molecules are not strictly dependent on either newly synthesized H chains or on intracellular chaperons. The study of H chain-peptide-beta 2m interaction on the cell surface may be relevant to understanding intracellular peptide loading events.  相似文献   

4.
Tumor cell lines induced by Gross murine leukemia virus were examined for cell-surface major histocompatibility complex class I expression. Three of five cell lines constitutively express H-2K and H-2D class I protein. Culturing these cells with interferon (IFN)-gamma, IFN-alpha/beta, or tumor necrosis factor increases both K and D expression in these cell lines. Two of five tumor cell lines express no class I proteins by fluorescence-activated cell sorter analysis, specific immunoprecipitation, and specific hybridization in Northern analysis. Treatment with IFN-gamma induces D, but not K protein expression in one of these cell lines. IFN-alpha/beta and tumor necrosis factor induce neither D nor K expression in this cell line. Thus, these two cytokines appear to have different mechanisms of action than IFN-gamma for altering class I expression. The other class I-negative tumor cell line does not express either K or D proteins under any conditions tested. All five cell lines express beta 2-microglobulin; this expression is increased by IFN-gamma treatment even in cell lines which do not express class I heavy chain. The results of this study demonstrate that 1) different tumor cell lines demonstrate variations in class I gene regulation, and 2) differences in regulation between class I genes may occur within a single cell line.  相似文献   

5.
We demonstrated a tightly coordinated timing in the appearance of mRNA for the four class II (Ia) MHC chains, A alpha, A beta, E alpha, and E beta, and the Ia-associated invariant chain in a murine macrophage cell line after the addition of immune interferon (IFN-gamma) or of IFN-gamma-containing supernatants from Con A-stimulated spleen cells. The marked increase in mRNA levels for these molecules at approximately 8 hr after IFN-gamma addition contrasts sharply with the earlier, more gradual kinetics observed for class I (H-2) and beta 2-microglobulin mRNA. The difference in kinetics of IFN-gamma induction of class I and class II mRNA suggests differential regulation of the expression of Ia and H-2 antigens. The long lag period preceding detection of Ia mRNA raises the possibility that IFN-gamma may not directly mediate the increase in mRNA expression, but may act through an additional cellular intermediate.  相似文献   

6.
It has been reported that the assembly of MHC class I molecules in mutagenized cell lines could be induced by specific binding peptides. We have now demonstrated that the defect in assembly between heavy and light chains of class I molecules naturally occurred in tumor cells of one spontaneous ovarian carcinoma detected by one-dimensional isoelectric focusing of immunoprecipitates with anti-monomorphic class I MAb (W6/32) and by immunostaining with free heavy chain and beta 2m-specific MAbs. In vitro treatment of the tumor cells with IFN-gamma induced the assembly and surface expression of majority class I molecules (A2.1, B7, B15, Cw6, Cw7 out of A2.1, A2*, B7, B15, Cw6, Cw7). Moreover, assembly of A2 and Cw6 was induced by exposure of the tumor cells to a HLA A2-binding peptide K62 derived from influenza A matrix protein. Autologous blood T lymphocytes were activated in mixed lymphocyte-tumor cell culture (MLTC) by the IFN-gamma-treated but not by the unmanipulated tumor cells. Although activated lymphocytes damaged both IFN-gamma-treated and untreated tumor cells, the alpha class I MAb (W6/32) efficiently inhibited the lysis of IFN-gamma-treated targets, but not the untreated targets. These results indicate that the defect of MHC class I assembly may result in the escape of tumor cells from immune response.  相似文献   

7.
Kgv cells do not constitutively express class I mRNA or protein. Interferon (IFN)-gamma, but not IFN-alpha/beta, induces H-2Dk expression. IFN does not induce H-2Kk expression. We examined constitutive and IFN-inducible class I expression on Kgv cells stably transfected with genomic clones of H-2Kk or H-2Dk and on somatic cell hybrid lines constructed between Kgv cells and constitutively class I-positive cells of a distinguishable H-2 haplotype. Our results suggest that both the lack of constitutive class I expression and the inability of IFN-alpha/beta to induce class I expression on Kgv cells are primarily due to cis-regulatory mechanisms. However, stable introduction of the H-2Dk gene into Kgv cells conferred IFN-gamma inducibility upon the silent endogenous H-2Kk gene. Therefore, the failure of IFN-gamma to induce H-2Kk expression on Kgv cells is due, at least in part, to a trans-regulatory mechanism.  相似文献   

8.
9.
The mechanisms of major histocompatibility complex (MHC) class I downregulation during Epstein-Barr virus (EBV) replication are not well characterized. Here we show that in several cell lines infected with a recombinant EBV strain encoding green fluorescent protein (GFP), the virus lytic cycle coincides with GFP expression, which thus can be used as a marker of virus replication. EBV replication resulted in downregulation of MHC class II and all classical MHC class I alleles independently of viral DNA synthesis or late gene expression. Although assembled MHC class I complexes, the total pool of heavy chains, and beta2-microglobulin (beta2m) were significantly downregulated, free class I heavy chains were stabilized at the surface of cells replicating EBV. Calnexin expression was increased in GFP+ cells, and calnexin and calreticulin accumulated at the cell surface that could contribute to the stabilization of class I heavy chains. Decreased expression levels of another chaperone, ERp57, and TAP2, a transporter associated with antigen processing and presentation, correlated with delayed kinetics of MHC class I maturation. Levels of both class I heavy chain and beta2m mRNA were reduced, and metabolic labeling experiments demonstrated a very low rate of class I heavy chain synthesis in lytically infected cells. MHC class I and MHC class II downregulation was mimicked by pharmacological inhibition of protein synthesis in latently infected cells. Our data suggest that although several mechanisms may contribute to MHC class I downregulation in the course of EBV replication, inhibition of MHC class I synthesis plays the primary role in the process.  相似文献   

10.
We report here that the expression of major histocompatibility complex (MHC) class I heavy chains not associated with beta 2-microglobulin is induced on resting human T cells by a variety of stimuli. These beta 2m-free class I heavy chains are not transported as such from the endoplasmic reticulum but originate from surface beta 2m-associated MHC class I molecules. beta 2m-free class I heavy chains are spontaneously released from the surface of activated cells. Cross-linking of beta 2m-free class I heavy chains with specific monoclonal antibodies results in the rapid down-regulation and internalization of these molecules. In contrast, beta 2m-associated MHC class I molecules display a different pattern of modulation. Previously, we reported that beta 2m-free class I heavy chains interact with CD8 molecules expressed on the same activated T cells. We propose that interactions between these molecules are involved in a mechanism regulating the function of activated T cells.  相似文献   

11.
E Joly  M B Oldstone 《Neuron》1992,8(6):1185-1190
Virally infected neurons avoid destruction by cytotoxic T lymphocytes (CTLs) by failing to express major histocompatibility complex (MHC) class I molecules. Like neurons in vivo and in primary culture, the OBL21 neuronal cell line expressed barely detectable levels of MHC class I molecules. This correlated with very low levels of mRNAs for the MHC class I heavy chains (alpha C). OBL21 cells also fail to provide MHC class I molecules with the peptides necessary for their efficient assembly and transport to the cell surface. This function can be restored by treatment with interferon-gamma (IFN-gamma). The mRNA for peptide transporters HAM1 and HAM2 was not detectable in OBL21 neuronal cells, but was induced by IFN-gamma treatment. Hence, the ability of neurons to evade CTL-mediated killing results from expression at low levels of the MHC class I alpha C, the peptide transporters HAM1 and HAM2, and possibly other genes of the peptide-loading machinery.  相似文献   

12.
The assembly of newly synthesized MHC class I molecules within the endoplasmic reticulum and their association with the transporter associated with antigen processing (TAP) is a process involving the chaperones calnexin and calreticulin. Using peptide mapping by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify a new component, we now introduce a third molecular chaperone, the thiol-dependent reductase ER-60 (ERp57/GRP58/ERp61/HIP-70/Q2), into this process. ER-60 is found in MHC class I heavy chain complexes with calnexin that are generated early during the MHC class I assembly pathway. The thiol reductase activity of ER-60 raises the possibility that ER-60 is involved in the disulfide bond formation within heavy chains. In addition, ER-60 is part of the late assembly complexes consisting of MHC class I, tapasin, TAP, calreticulin and calnexin. In a beta2-microglobulin (beta2m)-negative mouse cell line, S3, ER-60-calnexin-heavy chain complexes are shown to bind to TAP, suggesting that beta2m is not required for the association of MHC class I heavy chains with TAP.  相似文献   

13.
Biosynthesis of HLA class I antigens has been studied in a variant B-LCLxT-LCL hybrid, 174XCEM.T2. This cell line encodes HLA-A2 and -B5, but expresses only small amounts of A2 antigen and undetectable B5 antigen at the cell surface due to a mutation inactivating a trans-acting regulatory gene encoded within the class II region of the human major histocompatibility complex. Northern blot analysis with HLA-A- and HLA-B-specific probes shows that 174XCEM.T2 synthesizes quantities of A and B locus mRNA comparable with its class I antigen-positive parent cell line. Immune precipitation studies indicate that 174XCEM.T2 synthesizes normal HLA heavy chains and beta 2-microglobulin which fail to form dimers. The heavy chains are N-glycosylated normally, but processing of the glycan to the complex form does not occur. In addition, free heavy chains in this cell line are not phosphorylated. Thus, the majority of class I heavy chains in 174XCEM.T2 do not combine with beta 2-microglobulin, and are not processed or transported to the cell surface. As both subunits are synthesized in normal amounts, we propose that an additional molecule absent from 174XCEM.T2 and encoded by an HLA-linked gene is necessary for efficient assembly of class I antigen subunits.  相似文献   

14.
Human leukocyte antigen (HLA) class I molecule expression was investigated by DNA-mediated gene transfer. Cell surface expression was increased up to 75% by transfection of HLA-A2 or HLA-B8 heavy chain genes but not genes encoding light chains (beta(2)-microglobulin (beta(2)m)), transporter associated with antigen processing (TAP), or tapasin. Interferon (IFN) treatment further increased expression of transfected heavy chains, suggesting that IFN inducible molecules support heavy chain expression. IFN induces beta(2)m, TAP, and tapasin mRNAs. Transfected heavy chain expression increased upon cotransfection with genes encoding TAP1 and TAP2 but not individual TAP subunits, beta(2)m, or tapasin. Tetracycline inducible heavy chain gene expression was also increased by IFN treatment or TAP cotransfection, suggesting that IFN-induced TAP supports heavy chain maturation. Expression of a mutant that does not interact strongly with TAP, HLA-A2-T134K, was also increased by IFN. Inhibition of TAP-dependent peptide transport by ICP47 reduced heavy chain expression. Expression of HLA-A2, but not HLA-B8, was restored in ICP47 cells by HLA-A2-binding (IP-30) signal peptides. However, these peptides did not further increase transfected HLA-A2 expression, suggesting that peptide availability does not limit heavy chain expression in the absence of ICP47. These results suggest that cytokine-induced TAP supports maturation of HLA class I molecules through combined chaperone and peptide supply functions.  相似文献   

15.
COS7 (African Green Monkey kidney) cells stably transfected with the mouse MHC class I allele H-2K(b) were mutagenized, selected for low surface expression of endogenous MHC class I products, and subcloned. A mutant cell line, 4S8.12, expressing very low surface MHC class I (approximately 5% of parental levels) was identified. This cell line synthesized normal levels of the MHC class I H chain and beta(2)-microglobulin, as well as normal levels of TAP, tapasin, GRP78, calnexin, calreticulin, ERp57, and protein disulfide isomerase. Full-length OVA was processed to generate presented H-2K(b)-SIINFEKL complexes with equal efficiency in wild-type and mutant cells, demonstrating that proteasomes, as well as TAP and tapasin, functioned normally. Therefore, all the known components of the MHC class I Ag presentation pathway were intact. Nevertheless, primate (human and monkey) MHC class I H chain and beta(2)-microglobulin failed to associate to form the normal peptide-receptive complex. In contrast, mouse H chains associated with beta(2)-microglobulin normally and bound peptide at least as well as in wild-type cells. The 4S8.12 cells provide strong genetic evidence for a novel component in the MHC class I pathway. This as-yet unidentified gene is important in early assembly of primate, but not mouse, MHC class I complexes.  相似文献   

16.
Class I transplantation antigens form complexes with a virus protein encoded in the early region E3 of the adenovirus-2 genome. The interaction between this viral glycoprotein, E19, and nascent human class I antigens has been examined by microinjecting purified mRNA into Xenopus laevis oocytes. Both E19 and the two class I antigen subunits, the heavy chain and beta 2-microglobulin (beta 2M), were efficiently translated. The heavy chains did not become terminally glycosylated, as monitored by endoglycosidase H digestion, and were not expressed on the oocyte surface unless they were associated with beta 2M. The E19 protein did not become terminally glycosylated, and we failed to detect this viral protein on the surface of the oocytes. Co-translation of heavy chain and E19 mRNA demonstrated that the two proteins associate intracellularly. However, neither protein appeared to be transported to the trans-Golgi compartment. Similar observations were made in adenovirus-infected HeLa cells. Heavy chains bound to beta 2M became terminally glycosylated in oocytes in the presence of low concentrations of E19. At high concentrations of the viral protein, no carbohydrate modifications and no cell surface expression of class I antigens were apparent. Thus, beta 2M and E19 have opposite effects on the intracellular transport of the heavy chains. These data suggest that adenovirus-2 may impede the cell surface expression of class I antigens to escape immune surveillance.  相似文献   

17.
Invariant chain (Ii) has been shown to play a significant part in the assembly of MHC class II molecules. Ii also binds to MHC class I, although it is not known when this first occurs or whether it can affect class I assembly. Our examination of lysates of L(d)-transfected T2 cells showed that Ii bound intracellularly to folded, but not to open, forms of MHC class I. Furthermore, addition of peptides to the lysates dissociated Ii from the Ii-folded MHC class I complex. Thus, unlike other known chaperones, Ii associates only with folded, peptide-free class I molecules. To determine whether Ii can affect MHC class I transport and surface expression, we used both wild-type Ii and a mutant Ii that lacked the endosomal targeting sequence. Neither Ii nor Ii(Delta 20) increased the rate of MHC class I migration; however, Ii and (to a greater extent) Ii(Delta 20) increased cell surface expression of MHC class I. In HeLa cells, this effect was allele-specific, affecting HLA-A28 more than -B75. Ii also increased the surface expression of K(b) more than D(b) on Panc02 pancreatic adenocarcinoma cells. Neither form of Ii was detectable at the cell surface with MHC class I, indicating that Ii had exercised its effect on class I intracellularly. In total, these data suggest that Ii can bind peptide-free folded class I/beta(2)m heterodimers, but not open MHC class I heavy chains, in the endoplasmic reticulum, and that Ii can facilitate the surface expression of the MHC class I molecule.  相似文献   

18.
We have continued our investigations of line lung carcinoma cells to understand the molecular basis of decreased expression of class I H-2 Ag and class I Ag induction with DMSO. We show that line 1, a murine lung carcinoma cell line, has low levels of class I Ag (H-2K, D, and L) because it is deficient in both class I and beta 2-microglobulin (B2M) RNA, and that these mRNA can be coordinately induced with DMSO. Evidence presented herein also shows that IFN-gamma can induce surface expression of class I Ag and suggests that it may act through a different mechanism than DMSO in inducing class I Ag. To further evaluate the regulation of class I expression, H-2Dp genes were transfected into line 1 cells. The transfected H-2 genes appear to be constitutively expressed at much higher levels than are the endogenous class I genes because surface expression of the foreign Dp Ag on the transfectants is elevated relative to the endogenous H-2d haplotype class I Ag. Both Dp surface expression and Dp mRNA are induced after treatment with DMSO. In all the Dp transfectants, we observed higher constitutive levels of class I mRNA as well as increased constitutive levels of endogenous B2M mRNA when compared to control or untransfected line 1 cells, however, we could not correlate these constitutive levels with Dp copy number. These results suggest that the regulation of class I and B2M genes is linked and that expression of class I genes can affect the expression of B2M genes.  相似文献   

19.
Murine, rat, rabbit and guinea pig class I heavy chains, which do not react with W6/32 monoclonal antibody when they are expressed in association with autologous beta 2-microglobulin (beta 2-m), can acquire such a reactivity once they are expressed at the surface of cells cultured in conditions which allow their association with bovine beta 2-m. Sequence comparison of beta 2-ms suggests that glutamine at position 89 might be critical for the induction of the W6/32 defined antigenic determinant. However, in the murine species, certain class I heavy chains, in spite of their association with bovine beta 2-m, do not express this determinant. Using genetically engineered hybrid class I molecules and selected congenic strains of mice this negative property was shown to be related to the presence of a cysteine residue at position 121 which allows covalent association of beta 2-m to class I heavy chains (Bushkin, Y., J-S. Tung, A. Pinter, J. Michaelson, and E. A. Boyse. 1986. Unusual association of beta 2-microglobulin with certain class I heavy chains of the murine major histocompatibility complex. Proc. Natl. Acad. Sci. USA 83:432). Therefore, expression of the W6/32 defined antigenic determinant implicates both the beta 2-m and the second domain of the heavy chain, but its expression (or exposure) is prevented by the covalent fixation on cysteine 121 of the light chain.  相似文献   

20.
beta(2)-Microglobulin (beta(2)m) is non-covalently linked to the major histocompatibility complex (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I heavy chains can bind human beta(2)m (hbeta(2)m) and peptide, and such hybrid molecules are often used in structural and functional studies. The replacement of mouse beta(2)m (mbeta(2)m) with hbeta(2)m has several functional consequences for MHC class I complex stability and specificity, but the structural basis for this is presently unknown. To investigate the impact of species-specific beta(2)m subunits on MHC class I conformation, we provide a crystallographic comparison of H-2D(b) in complex with LCMV-derived gp33 peptide and either hbeta(2)m or mbeta(2)m. The conformation of the gp33 peptide is not affected by the beta(2)m species. Comparison of the interface between beta(2)m and the alpha(1)alpha(2) domains of the heavy chain in these two crystal structures reveals a marked increase in both polarity and number of hydrogen bonds between hbeta(2)m and the alpha(1)alpha(2) domains of H-2D(b). We propose that the positioning of two hydrogen bond rich regions at the hbeta(2)m/alpha(1)alpha(2) interface plays a central role in the increased overall stability and peptide exchange capacity in the H-2D(b)/hbeta(2)m complex. These two regions act as bridges, holding and stabilizing the underside of the alpha(1) and alpha(2) helices, enabling a prolonged peptide-receptive conformation of the peptide binding cleft. Furthermore, analysis of H-2D(b) in complex with either mbeta(2)m or hbeta(2)m provides a structural explanation for the differential binding of H-2D(b)/hbeta(2)m to both Ly49A and Ly49C. Our comparative structural study emphasizes the importance of beta(2)m residues at positions 3, 6 and 29 for binding to Ly49A and suggests that sterical hindrance by residue K6 on hbeta(2)m impairs the recognition of Ly49C by H-2D(b)/gp33/hbeta(2)m. Finally, comparison of the two H-2D(b) crystal structures implies that the beta(2)m species may affect the strength of TCR recognition by affecting CD8 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号