首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm–egg plasma membrane fusion is preceded by sperm adhesion to the egg plasma membrane. Cell–cell adhesion frequently involves multiple adhesion molecules on the adhering cells. One sperm surface protein with a role in sperm–egg plasma membrane adhesion is fertilin, a transmembrane heterodimer (α and β subunits). Fertilin α and β are the first identified members of a new family of membrane proteins that each has the following domains: pro-, metalloprotease, disintegrin, cysteine-rich, EGF-like, transmembrane, and cytoplasmic domain. This protein family has been named ADAM because all members contain a disintegrin and metalloprotease domain. Previous studies indicate that the disintegrin domain of fertilin β functions in sperm–egg adhesion leading to fusion. Full length cDNA clones have been isolated for five ADAMs expressed in mouse testis: fertilin α, fertilin β, cyritestin, ADAM 4, and ADAM 5. The presence of the disintegrin domain, a known integrin ligand, suggests that like fertilin β, other testis ADAMs could be involved in sperm adhesion to the egg membrane. We tested peptide mimetics from the predicted binding sites in the disintegrin domains of the five testis-expressed ADAMs in a sperm–egg plasma membrane adhesion and fusion assay. The active site peptide from cyritestin strongly inhibited (80–90%) sperm adhesion and fusion and was a more potent inhibitor than the fertilin β active site peptide. Antibodies generated against the active site region of either cyritestin or fertilin β also strongly inhibited (80–90%) both sperm–egg adhesion and fusion. Characterization of these two ADAM family members showed that they are both processed during sperm maturation and present on mature sperm. Indirect immunofluorescence on live, acrosome-reacted sperm using antibodies against either cyritestin or fertilin β showed staining of the equatorial region, a region of the sperm membrane that participates in the early steps of membrane fusion. Collectively, these data indicate that a second ADAM family member, cyritestin, functions with fertilin β in sperm–egg plasma membrane adhesion leading to fusion.  相似文献   

2.
Fertilization includes a series of cellular interactions culminating with the fusion of gamete membranes, creating a zygote. Two ADAM proteins present on sperm, fertilin beta and cyritestin, drew much attention. However, gene deletion in mice showed that fusion can happen in their absence. The presence of the integrin alpha6beta1 on egg, a putative fertilin beta receptor, is also dispensable. In contrast, sperm lacking Izumo, a molecule with a single Ig domain, are unable to fuse. On the egg side, a role for GPI-anchored molecules has been shown, and in mice lacking both tetraspanins CD9 and CD81 fertilization is completely blocked.  相似文献   

3.
Male mice deficient for germ-cell cyritestin are infertile   总被引:15,自引:0,他引:15  
Cyritestin is a membrane-anchored sperm protein belonging to the ADAM (f1.gif" BORDER="0"> f2.gif" BORDER="0">isintegrin and f1.gif" BORDER="0"> f3.gif" BORDER="0">etalloprotease) family of proteins, which are proposed to be involved in cell-cell adhesion through binding to integrin receptors. Several lines of evidence support a role of cyritestin and other members of this protein family in the fusion of sperm and the egg plasma membrane. In an effort to elucidate the physiological function of cyritestin, we have disrupted its locus by homologous recombination. Male homozygous null mutants are infertile, even though spermatogenesis, mating, and migration of sperm from the uterus into the oviduct are normal. In vitro experiments showed that infertility is due to the inability of the cyritestin-deficient sperm to bind to the zona pellucida. However, after removal of the zona pellucida, sperm-egg membrane fusion monitored by the presence of pronuclei and generation of 2- and 4-cell embryos did not reveal any differences from the wild-type situation. These results demonstrate that cyritestin is crucial in the fertilization process at the level of the sperm-zona pellucida interaction.  相似文献   

4.
Adam2-null and Adam3-null male mice exhibit reduced levels of one or more ADAM proteins on mature sperm, in addition to the loss of the genetically targeted protein. ADAM protein loss was believed to occur posttranslationally, although the timing of loss and the mechanism by which the loss occurred were not explored. In this study we have found that in Adam3-null mice, fertilin beta (also known as ADAM2) is lost during the formation of testicular sperm. In Adam2-null males, most cyritestin (ADAM3) protein is also lost at this stage, but 25% of cyritestin is lost later, during sperm passage through the epididymis. Although normal levels of cyritestin are synthesized and acquire Endoglycosidase H resistance, indicating transit through the Golgi, the protein does not reach the cell surface. We also discovered that the majority of both fertilin beta and cyritestin are found in a Triton X-100 insoluble compartment on testicular sperm, when most of the cyritestin was observed on the cell surface. This insoluble compartment may represent a sorting platform, because in Adam2-knockout cells, only a small fraction of the cyritestin becomes Triton X-100 insoluble. Thus, it appears that cyritestin loss in Adam2-knockout mice may result, at least in part, from a disruption in protein trafficking.  相似文献   

5.
Male mice lacking ADAM2 (fertilin beta) or ADAM3 (cyritestin) are infertile; cauda epididymal sperm (mature sperm) from these mutant mice cannot bind to the egg zona pellucida. ADAM3 is barely present in Adam2-null sperm, despite normal levels of this protein in Adam2-null testicular germ cells (TGCs; sperm precursor cells). Here, we have explored the molecular basis for the loss of ADAM3 in Adam2-null TGCs to clarify the biosynthetic and functional linkage of ADAM2 and ADAM3. A small portion of total ADAM3 was found present on the surface of wild-type and Adam2(-/-) TGCs at similar levels. In the Adam2-null TGCs, however, surface-localized ADAM3 exhibited an increased amount of an endoglycosidase H-resistant form that may be related to instability of ADAM3. Moreover, we found a complex between ADAM2 and ADAM3 on the surface of TGCs and sperm. The intracellular chaperone calnexin was a component of the testicular ADAM2-ADAM3 complex. Our findings suggest that the association with ADAM2 is a key element for stability of ADAM3 in epididymal sperm. The presence of the ADAM2-ADAM3 complex in sperm also suggests a potential role of ADAM2 with ADAM3 in sperm binding to the egg zona pellucida.  相似文献   

6.
The Niemann-Pick C1 (NPC1) gene encodes for a multiple membrane spanning protein, which regulates the trafficking of low-density lipoprotein-mediated endocytosed cholesterol. Mutation of the human NPC1 gene causes Niemann-Pick type C (NPC) disease. The Npc1(NIH) mice, a model of human NPC disease, bear a spontaneous mutation of the Npc1 gene, and are infertile. In this study, we have performed sperm analysis to search for the cause of male infertility in the Npc1(NIH) mouse. The number of cauda sperms in Npc1(-/-) mice was decreased roughly three-and-half-fold of that in wild-type mice. The decreased sperm number in Npc1(-/-) mice is due, at least in part, to partial arrest of spermatogenesis in the testes, as revealed by histological analysis. Compared to wild-type sperm, Npc1(-/-) sperm displayed a high frequency of morphological abnormalities, including tailless heads and aberrant heads. In the in vitro fertilization (IVF) assay using cumulus-intact eggs, Npc1(-/-) sperm failed to produce two-cell embryos. In the IVF assay where zona-free eggs were used, Npc1(-/-) sperm bound normally but could not fuse with the egg. Further analysis indicated that Npc1(-/-) sperms are drastically impaired in the binding to the egg zona pellucida, only 14% of the level of wild-type sperm. Moreover, on Npc1(-/-) cauda sperm, one-third of the total cyritestin protein was not proteolytically processed, while fertilin beta was processed normally. Taken together, these results demonstrate that there are multiple defects in sperms from mice lacking a functional NPC1 protein, and these observed sperm defects may result in sterility.  相似文献   

7.
Proprotein convertase subtilisin/kexin 4 (PCSK4) is implicated for sperm fertilizing ability, based on studies using Pcsk4‐null mice. Herein we demonstrated proprotein convertase (PC) activity in intact sperm and acrosomal vesicles. To determine whether this activity was important for sperm fertilizing ability, a peptide inhibitor was designed based on PCSK4 prodomain sequence (proPC475–90), which contains its primary autocatalytic cleavage site. ProPC475–90 inhibited recombinant PCSK4's activity with a Ki value of 5.4 µM, and at 500 µM, it inhibited sperm PC activity almost completely. Treatment of sperm with proPC475–90 inhibited their egg fertilizing ability in a dose dependent manner. Correlation between sperm PC activity and fertilizing ability showed a high co‐efficient value (>0.9), indicating the importance of sperm PC activity in fertilization. In particular, sperm PC activity was important for capacitation and zona pellucida (ZP)‐induced acrosome reaction, since proPC475–90‐treated sperm showed markedly decreased rates in these two events. These results were opposite to those observed in Pcsk4‐null sperm, which contained higher PC activity than wild type sperm, possibly due to overcompensation by PCSK7, the other PCSK enzyme found in sperm. ADAM2 (45 kDa), a sperm plasma membrane protein, involved in sperm–egg plasma membrane interaction, was also processed into a smaller form (27 kDa) during capacitation at a much reduced level in proPC475–90‐treated sperm. This result suggested that ADAM2 may be a natural substrate of sperm PCSK4 and its cleavage by the enzyme during acrosome reaction may be relevant to the fertilization process. J. Cell. Physiol. 226: 2817–2826, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
In mouse, two different isoforms of ADAM1 (fertilin alpha), ADAM1a and ADAM1b, are produced in the testis. ADAM1a is localized within the endoplasmic reticulum of testicular germ cells, whereas epididymal sperm contain only ADAM1b on the plasma membrane. In this study, we show that the loss of ADAM1a results in the male infertility because of the severely impaired ability of sperm to migrate from the uterus into the oviduct through the uterotubal junction. However, epididymal sperm of ADAM1a-deficient mice were capable of fertilizing cumulus-intact, zona pellucida-intact eggs in vitro despite the delayed dispersal of cumulus cells and the reduced adhesion/binding to the zona pellucida. Among testis (sperm)-specific proteins examined, only the level of ADAM3 (cyritestin) was strongly reduced in ADAM1a-deficient mouse sperm. Moreover, the appearance of ADAM3 on the sperm surface was dependent on the formation of a fertilin protein complex between ADAM1a and ADAM2 (fertilin beta) in testicular germ cells, although no direct interaction between the fertilin complex and ADAM3 was found. These results suggest that ADAM1a/ADAM2 fertilin may be implicated in the selective transport of specific sperm proteins including ADAM3 from the endoplasmic reticulum of testicular germ cells onto the cell surface. These proteins then can participate in sperm migration into the oviduct, the dispersal of cumulus cells, and sperm binding to the zona pellucida.  相似文献   

9.
Tyrosine O-sulfation is a post-translational modification catalyzed by two tyrosylprotein sulfotransferases (TPST-1 and TPST-2) in the trans-Golgi network. Tpst2-deficient mice have male infertility, sperm motility defects, and possible abnormalities in sperm-egg membrane interactions. Studies here show that compared with wild-type sperm, fewer Tpst2-null sperm bind to the egg membrane, but more of these bound sperm progress to membrane fusion. Similar outcomes were observed with wild-type sperm treated with the anti-sulfotyrosine antibody PSG2. The increased extent of sperm-egg fusion is not due to a failure of Tpst2-null sperm to trigger establishment of the egg membrane block to polyspermy. Anti-sulfotyrosine staining of sperm showed localization similar to that of IZUMO1, a sperm protein that is essential for gamete fusion, but we detected little to no tyrosine sulfation of IZUMO1 and found that IZUMO1 expression and localization were normal in Tpst2-null sperm. Turning to a discovery-driven approach, we used mass spectrometry to characterize sperm proteins that associated with PSG2. This identified ADAM6, a member of the A disintegrin and A metalloprotease (ADAM) family; members of this protein family are associated with multiple sperm functions. Subsequent studies revealed that Tpst2-null sperm lack ADAM6 and ADAM3. Loss of ADAM3 is strongly associated with male infertility and is observed in knockouts of male germ line-specific endoplasmic reticulum-resident chaperones, raising the possibility that TPST-2 may function in quality control in the secretory pathway. These data suggest that TPST-2-mediated tyrosine O-sulfation participates in regulating the sperm surface proteome or membrane order, ultimately affecting male fertility.  相似文献   

10.
Fertilin, a heterodimeric protein complex composed of alpha (ADAM1) and beta (ADAM2) subunits on the sperm surface, is believed to mediate adhesion and fusion between the sperm and egg plasma membranes. Here we have shown that mutant male mice lacking ADAM1b are fertile and that the loss of ADAM1b results in no significant defect in sperm functions such as migration from the uterus into oviduct, binding to egg zona pellucida, and fusion with zona pellucida-free eggs. ADAM1b-deficient epididymal sperm showed a severe reduction of ADAM2 on the cell surface, despite the normal presence of ADAM2 in testicular germ cells. The appearance of ADAM1b and ADAM2 on the sperm surface depended on formation and abundance of ADAM1b/ADAM2 fertilin in testicular germ cells. These results suggest that mouse ADAM1b/ADAM2 fertilin may play a crucial role not in the sperm/egg fusion but in the appearance of these two ADAMs on the sperm surface.  相似文献   

11.
Male mice deficient for the calmegin (Clgn) or the angiotensin-converting enzyme (Ace) gene show impaired sperm migration into the oviduct and loss of sperm-zona pellucida binding ability in vitro. Since CLGN is a molecular chaperone for membrane transport of target proteins and ACE is a membrane protein, we looked for ACE on the sperm membranes from Clgn-/- mice. ACE was present and showed normal activity, indicating that CLGN is not involved in transporting ACE to the sperm membranes. The ablation of the Adam2 and Adam3 genes generated animals whose sperm did not bind the zona pellucida, which led us to examine the presence of ADAM2 and ADAM3 in Clgn-/- and Ace-/- sperm. ADAM3 was absent from Clgn-/- sperm. In the Ace-/- mice, while ADAM2 was found normally in the sperm, ADAM3 disappeared from the Triton X-114 detergent-enriched phase after phase separation, which suggests that ACE is involved in distributing ADAM3 to a location where it can participate in sperm-zona pellucida binding. This diminished amount of ADAM3 in the Triton X-114 detergent-enriched phase may explain the inability of Clgn-/- and Ace-/- sperm to bind to the zona pellucida.  相似文献   

12.
ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.  相似文献   

13.
Fertilin alpha (also known as ADAM1) is a member of the ADAM (A disintegrin and A metalloprotease domain) family of proteins. In this study, we examine the mechanism of mouse fertilin alpha's in adhesion of sperm to the egg plasma membrane during fertilization. We find that recombinant forms of fertilin alpha corresponding to either the disintegrin-like domain or the cysteine-rich domain and the EGF-like repeat can perturb sperm-egg binding, suggesting that both of these domains can participate in fertilin alpha-mediated adhesion events. In further examination of the fertilin alpha disintegrin-like domain, we find that a subdomain of disintegrin-like domain with the sequence DLEECDCG outside the putative disintegrin loop but with homology to the fertilin beta disintegrin loop can inhibit the binding of both sperm and recombinant fertilin alpha to eggs, suggesting that this is an adhesion-mediating motif of the fertilin alpha disintegrin-like domain. This sequence also inhibits the binding of recombinant fertilin beta to eggs and thus is the first peptide sequence found to block two different sperm ligands. Finally, a monoclonal antibody to the tetraspanin protein CD9, KMC.8, inhibited the binding of recombinant fertilin alpha to eggs in one type of binding assay, suggesting that, under certain conditions, fertilin alpha may interact with a KMC.8-sensitive binding site on the egg plasma membrane.  相似文献   

14.
One of the most important cell-cell interactions is that of the sperm with the egg. This interaction, which begins with cell adhesion and culminates with membrane fusion, is mediated by multiple molecules on the gametes. One of the best-characterized of these molecules is fertilin beta, a ligand on mammalian sperm and one of the first ADAMs (A Disintegrin and A Metalloprotease domain) to be identified. Fertilin beta (also known as ADAM2) participates in sperm-egg membrane binding, and it has long been hypothesized that this function is achieved through the interaction of the disintegrin domain of fertilin beta with an integrin on the egg surface. There are now approximately 30 members of the ADAM family and, to date, five different ADAMs (fertilin beta, ADAM9, ADAM12, ADAM15, ADAM23) have been described to interact with integrins (specifically alpha(6)beta(1), alpha(v)beta(3), alpha(9)beta(1), alpha(v)beta(5), and/or alpha(5)beta(1)). This field will be discussed with respect to what is known about specific ADAMs and the integrins with which they interact, and what the implications are for sperm-egg interactions and for integrin function. These data will also be discussed in the context of recent knockout studies, which show that eggs lacking the alpha(6) integrin subunit can be fertilized, and eggs lacking the integrin-associated tetraspanin protein CD9 fail to fertilize. Key issues in cell adhesion that pertain to gametes and fertilization will also be highlighted.  相似文献   

15.
The male sterile mutation, misfire (mfr), of Drosophila melanogaster is a novel paternal effect, fertilization defective mutant that effects sperm head decondensation. mfr sperm were motile, appeared normal morphologically and were transferred to the female during copulation. However, less than 0.1% of eggs laid by females mated to mfr males hatched. Although mfr sperm entered eggs at a high frequency (93%), 99% of the inseminated eggs did not initiate the first nuclear division. Unlike wild type fertilizing sperm, the position and shape of mfr sperm tails within the egg were not constant, but varied in a seemingly random manner. The heads of inseminating mutant sperm were always located near the surface of eggs just underlying the egg plasma membrane, and maintained their needle-like shape indicating the failure of nuclear decondensation. Further observations revealed that plasma membrane of inseminating sperm appeared intact, including the head region. These phenotypes were equivalent to those of sneaky (snky), another fertilization defective male sterile mutation. Our observations strongly suggest that mfr mutant males are sterile because their inseminating sperm fail to form a male pronucleus due to the inability of the sperm to properly respond to egg factors responsible for the breakdown of the plasma membrane. Although mfr and snky mutations were phenotypically identical, they mapped to cytologically distinct genetic loci and no genetic interactions were observed, suggesting that at least two distinct paternal gene products are involved in the early stages of pronuclear formation.  相似文献   

16.
Fertilization is the process that leads to the formation of a diploid zygote from two haploid gametes. This is achieved through a complex series of cell-to-cell interactions between a sperm and an egg. The final event of fertilization is the fusion of the gametes’ membranes, which allows the delivery of the sperm genetic material into the egg cytoplasm. In vivo studies in the laboratory mouse have led to the discovery of membrane proteins that are essential for the fusion process in both the sperm and egg. Specifically, the sperm protein Izumo1 was shown to be necessary for normal fertility. Izumo1-deficient spermatozoa fail to fuse with the egg plasma membrane. Izumo1 is a member of the Immunoglobulin Superfamily of proteins, which are known to be involved in cell adhesion. Here, we describe BART97b, a new mouse line with a recessive mutation that displays a fertilization block associated with a failure of sperm fusion. BART97b mutants carry a deletion that inactivates Spaca6, a previously uncharacterized gene expressed in testis. Similar to Izumo1, Spaca6 encodes an immunoglobulin-like protein. We propose that the Spaca6 gene product may, together with Izumo1, mediate sperm fusion by binding an as yet unidentified egg membrane receptor.  相似文献   

17.
Complementary adhesion molecules are located on the surface of mouse eggs and sperm. These molecules support species-specific interactions between sperm and eggs that lead to gamete fusion (fertilization). Modification of these molecules shortly after gamete fusion assists in prevention of polyspermic fertilization. mZP3, an 83,000-Mr glycoprotein located in the egg extracellular coat, or zona pellucida, serves as primary sperm receptor. Gamete adhesion in mice is carbohydrate-mediated, since sperm recognize and bind to certain mZP3 serine/threonine- (O-) linked oligosaccharides. As a consequence of binding to mZP3, sperm undergo the acrosome reaction, which enables them to penetrate the zona pellucida and fertilize the egg. A 56,000-Mr protein called sp56, which is located in plasma membrane surrounding acrosome-intact mouse sperm heads, is a putative primary egg-binding protein. It is suggested that sp56 recognizes and binds to certain mZP3 O-linked oligosaccharides. Acrosome-reacted sperm remain bound to eggs by interacting with mZP2, a 120,000-Mr zona pellicida glycoprotein. Thus, mZP2 serves as secondary sperm receptor. Perhaps a sperm protease associated with inner acrosomal membrane, possibly (pro)acrosin, serves as secondary egg-binding protein. These and, perhaps, other egg and sperm surface molecules regulate fertilization in mice. Homologous molecules apparently regulate fertilization in other mammals.  相似文献   

18.
Antibody inhibition and alpha6beta1 ligand binding experiments indicate that the egg integrin alpha6beta1 functions as a receptor for sperm during gamete fusion; yet, eggs null for the alpha6 integrin exhibit normal fertilization. Alternative integrins may be involved in sperm-egg binding and fusion and could compensate for the absence of alpha6beta1. Various beta1 integrins and alphav integrins are present on mouse eggs. Some of these integrins are also reported to be receptors for ADAMs, which are expressed on sperm. Using alpha3 integrin null eggs, we found that the alpha3beta1 integrin was not essential for sperm-egg binding and fusion. Oocyte-specific, beta1 integrin conditional knockout mice allowed us to obtain mature eggs lacking all beta1 integrins. We found that the beta1 integrin null eggs were fully functional in fertilization both in vivo and in vitro. Furthermore, neither anti-mouse beta3 integrin function-blocking monoclonal antibody (mAb) nor alphav integrin function-blocking mAb inhibited sperm binding to or fusion with beta1 integrin null eggs. Thus, function of beta3 or alphav integrins does not seem to be involved in compensating for the absence of beta1 integrins. These results indicate that none of the integrins known to be present on mouse eggs or to be ADAM receptors are essential for sperm-egg binding/fusion, and thus, egg integrins may not play the role in gamete fusion previously attributed to them.  相似文献   

19.
During fertilization in mice, acrosome-intact sperm bind via plasma membrane overlying their head to a glycoprotein, called ZP3, present in the egg extracellular coat or zona pellucida. Bound sperm then undergo the acrosome reaction, which results in exposure of inner acrosomal membrane, penetrate through the zona pellucida, and fuse with egg plasma membrane. Thus, in the normal course of events, acrosome-reacted sperm must remain bound to eggs, despite loss of plasma membrane from the anterior region of the head and exposure of inner acrosomal membrane. Here, we examined maintenance of binding of sperm to the zona pellucida following the acrosome reaction. We found that polyclonal antisera and monoclonal antibodies directed against ZP2, another zona pellucida glycoprotein, did not affect initial binding of sperm to eggs, but inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. On the other hand, polyclonal antisera and monoclonal antibodies directed against ZP3 did not affect either initial binding of acrosome-intact sperm to eggs or maintenance of binding following the acrosome reaction. We also found that soybean trypsin inhibitor, a protein reported to prevent binding of mouse sperm to eggs, did not affect initial binding of sperm to eggs, but, like antibodies directed against ZP2, inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. These and other observations suggest that ZP2 serves as a secondary receptor for sperm during the fertilization process in mice and that maintenance of binding of acrosome-reacted sperm to eggs may involve a sperm, trypsin-like proteinase.  相似文献   

20.
The function of glycosylphosphatidylinositol-anchored sperm hyaluronidase PH-20 in fertilization has long been believed to enable acrosome-intact sperm to pass through the layer of cumulus cells and reach the egg zona pellucida. In this study, we have produced mice carrying a null mutation in the PH-20 gene using homologous recombination. Despite the absence of sperm PH-20, the mutant male mice were still fertile. In vitro fertilization assays showed that mouse sperm lacking PH-20 possess a reduced ability to disperse cumulus cells from the cumulus mass, resulting in delayed fertilization solely at the early stages after insemination. Moreover, SDS-PAGE of sperm extracts and subsequent Western blot analysis revealed the presence of other hyaluronidase(s), except PH-20, presumably within the acrosome of mouse sperm. These data provide evidence that PH-20 is not essential for fertilization, at least in the mouse, suggesting that the other hyaluronidase(s) may play an important role in sperm penetration through the cumulus cell layer and/or the egg zona pellucida, possibly in cooperation with PH-20, although the importance of sperm motility cannot be neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号