首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The objective of this research was to show how a mechanistic uptake model that accurately predicts phosphorus (P) uptake by maize (Zea mays L.) in a pot experiment may be used to evaluate the reasons for the differences in P availability observed when soil pH is varied. The model predicts P uptake by integrating soil P supply by mass flow and diffusion; size, shape and growth rate of roots; and P uptake kinetics of the root. The P supply parameters of the model that may be affected by soil pH are Pli, initial P concentration in the soil solution; b, the buffer power of P in the soil, Psi, for Pli, and De, effective diffusion coefficient. The effect of these changes on P uptake was predicted with the model by using measured values of the three soil supply parameters and of size, shape, and growth rate of roots and keeping the other parameters at values characteristic of maize. Values for three soil supply parameters can be calculated from measurements of Pli, Psi, and , volumetric water content. The predictions of the model closely agreed with observed uptake when form of P present at the higher pH's was accounted for. There was a significant positive correlation (r=0.94) between Pli and observed P uptake and a significant negative correlation (-0.93) between Psi and observed P uptake. The use of the model demonstrated the significance of P form and the importance of Pli in P uptake. It also showed importance of root growth rate.  相似文献   

2.
Previous research has shown that plant extracts, e.g. from boreal dwarf shrubs and trees, can cause reduced growth of neighbouring plants: an effect known as allelopathy. To examine whether arctic and subarctic plants could also be affected by leaching of phytochemicals, we added extracts from the commonly occurring arctic dwarf shrubs Cassiope tetragona and Empetrum hermaphroditum, and from mountain birch, Betula pubescens ssp. tortuosa to three graminoid species, Carex bigelowii, Festuca vivipara and Luzula arcuata, grown in previously sterilized or non-sterilized arctic soils. The graminoids in non-sterilized soil grew more slowly than those in sterilized soil. Excised roots of the plants in non-sterilized soil had higher uptake rate of labelled P than those in sterilized soil, demonstrating larger nutrient deficiency. The difference in growth rate was probably caused by higher nutrient availability for plants in soils in which the microbial biomass was killed after soil sterilization. The dwarf shrub extracts contained low amounts of inorganic N and P and medium high amounts of carbohydrates. Betula extracts contained somewhat higher levels of N and much higher levels of P and carbohydrates. Addition of leaf extracts to the strongly nutrient limited graminoids in non-sterilized soil tended to reduce growth, whereas in the less nutrient limited sterilized soil it caused strong growth decline. Furthermore, the N and P uptake by excised roots of plants grown in both types of soil was high if extracts from the dwarf shrubs (with low P and N concentrations) had been added, whereas the P uptake declined but the N uptake increased after addition of the P-rich Betula extract. In contrast to the adverse extract effects on plants, soil microbial respiration and soil fungal biomass (ergosterol) was generally stimulated, most strongly after addition of the Betula extract. Although we cannot exclude the possibility that the reduced plant growth and the concomitant stimulation of microbial activity were caused by phytochemicals, we believe that this was more likely due to labile carbon in the extracts which stimulated microbial biomass and activity. As a result microbial uptake increased, thereby depleting the plant available pool of N and P, or, for the P-rich Betula extract, depleting soil inorganic N alone, to the extent of reducing plant growth. This chain of events is supported by the negative correlation between plant growth and sugar content in the three added extracts, and the positive correlation between microbial activity, fungal biomass production and sugar content, and are known reactions when labile carbon is added to nutrient deficient soils.  相似文献   

3.
Plant genotypes differ in P efficiency, i.e. their capacity to grow in soil with low P availability. Plant properties such as root and root hair length, release of P mineralising and mobilising compounds by the roots and P requirement for optimal growth are known to influence P efficiency. In order to improve the understanding of the role of rhizosphere properties in plant P uptake, we grew three Poaceae genotypes [two wheat (Triticum aestivum L.) genotypes (the P-efficient Goldmark and the P-inefficient Janz), and the Australian native grass Austrostipa densiflora L.] to maturity in an acidic loamy sand with low P availability. Addition of 120 mg P as FePO4 kg−1 (P120) improved the growth of all three genotypes. In both P0 and P120, growth and P uptake were smaller in Janz than in Goldmark. During the vegetative phase, growth and P uptake of Austrostipa were smaller than in Goldmark in P0 but greater in P120. These differences can be explained by plant properties such as root growth, specific P uptake, mobilisation of inorganic and organic P by root exudates and P utilisation efficiency. In P120, P availability in the rhizosphere was least in Janz and greatest in Austrostipa. Microbial biomass P in the rhizosphere was least in Janz. Acid phosphatase activity was greatest in the rhizosphere of Austrostipa and least in Janz. Plant growth and P uptake were positively correlated with microbial P, acid phosphatase activity and resin P in the rhizosphere, suggesting that microorganisms contribute to uptake of P by plants in this soil. Microbial community composition in the rhizosphere [analysed by fatty acid methylester (FAME) analysis and denaturing gradient gel electrophoresis (DGGE)] differed among genotypes, changed during plant development and was affected by P addition to the soil. Genotype-specific microbial community composition in the rhizosphere may have contributed to the observed differential capacity of plants to grow at low P availability.  相似文献   

4.
Summary The effects of vesicular-arbuscular mycorrhiza (VAM) and of mulching on growth of barley were investigated in a factorial experiment. Plants were grown in cylinders buried in a field in soil with moderate amounts of available phosphate. VAM infection, dry weight and P uptake were determined at harvest after 10 and 161/2 weeks growth.VAM infection was reduced in the upper soil layer by straw mulch, possibly through a reduction in temperature. By the second harvest VAM increased growth by 56% in the non-mulched plots through increased P uptake but VAM did not increase growth in the mulched plots. Mulch increased growth by 85% in the non-mycorrhizal plots, and 28% in the mycorrhizal plots.  相似文献   

5.
Nutrient acquisition from different soil depths by pedunculate oak   总被引:2,自引:0,他引:2  
Eight oak trees (Quercus robur L.) received 32P at a soil depth of 50 cm and 33P at a soil depth of 15 cm at the end of June 2002 through plastic tubes inserted into the mineral soil. The phosphorus uptake from different soil depths was estimated by analysing the concentration of 32P and 33P in the foliage of oak growing in a mixed stand in southern Sweden. 32P and 33P were recovered in the leaves/needles after 21 and 39 days. The recovery of labelled P in oak was higher from 15 cm soil depth than from 50 cm, however, more than 4% of the total amount of labelled P was taken up from 50 cm. This indicates that oak can utilize deep soil layers for nutrient uptake. A study on the uptake of Cs (as an analogue to K) and 15N into the leaves was performed on the same trees and detectable amounts of 15N and Cs were recovered in leaves and buds. This indicates that 15N and Cs can be used to study nutrient uptake of mature trees from the mineral soil.  相似文献   

6.
A greenhouse experiment was performed to evaluate the effect of Norway spruce (Picea abies (L.) Karst.) seedlings on net nutrient availability in five different growing media containing F- or H-layer and mineral soil originating from a haplic podzol in northern Sweden. The initial total amounts of eight nutrient elements (N, K, P, Ca, Mg, Mn, Fe, Zn) and exchangeable amounts of the same elements were analyzed in pots with or without spruce seedlings. In the planted pots seedling nutrient uptake was also estimated. After 26 weeks, higher net nutrient availability with seedlings was found in 25 out of the 40 (62%) growing media and nutrient element combinations. A positive seedling effect on net nutrient availability might be explained by rhizodeposition stimulating the soil microorganism activity and accelerating the weathering of minerals or by seedling roots promoting the nutrient providing processes through changes in soil chemical and physical properties. Nitrogen availability was primarily affected by what part of the forest floor the growing medium contained although the positive response to seedling presence was apparent. The positive net availability response of P, Ca, Mg, Mn, Fe and Zn to seedling presence was on the other hand relatively strong. In the case of P, K, and Zn the growing medium composition (if the F- and H-layer was pure or mixed with mineral soil) was also an important factor for the estimated net availability. Pure F-and H-layer provided greater P- and K-availability while the availability of Zn increased when mineral soil was added. The influence of growing plants ought to be considered when soil samples are used for assessing the nutrient availability.  相似文献   

7.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

8.
During a seven-month period the effect of different nitrogen (N) availability in soil on growth and nutrient uptake was studied in three-year-old Norway spruce (Picea abies [L.] Karst.) trees. The plants were grown in pots on N-poor forest soil supplied with various amounts and forms (inorganic and organic) of N. Increasing supply of inorganic N (as NH4NO3) increased the formation of new shoots and shoot dry weight. The root/shoot dry weight ratio of new growth was drastically decreased from 1.6 in plants without N supply to 0.5 in plants supplied with high levels of NH4NO3. This decrease in root/shoot dry weight ratio was associated with distinct changes in root morphology in favour of shorter and thicker roots. The addition of keratin as organic N source did neither affect growth nor root morphology of the trees. The amount of N taken up by plants was closely related to the supply of inorganic N, and trees supplied with highest levels of NH4NO3 also had the highest N contents in the dry matter of needles and roots. In contrast, N contents in needles of trees grown without additional N, or with keratin supply, were in the deficiency range. Supply of NH4NO3 decreased the contents of phosphate (P) and potassium (K) and therefore markedly increased N/P and N/K ratios in the needles. On the other hand, the contents of calcium (Ca), magnesium (Mg), and manganese (Mn) in the needles were increased in the plants supplied with inorganic N, suggesting high soil availability and promotion of uptake of these divalent cations by high nitrate uptake. The observed effects on root/shoot dry weight ratio, root morphology, and mineral nutrient composition of the needles indicated that high inorganic N supply may increase above-ground productivity but at the same time decrease the tolerance of trees against soil-borne (e.g. deficiency of other mineral nutrients) stress factors. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

9.
Adhikari  Tapan  Rattan  R. K. 《Plant and Soil》2000,220(1-2):235-242
The Barber-Cushman mechanistic nutrient uptake model which has been utilized extensively to describe and predict nutrient uptake by crop plants at different stages of crop growth was evaluated for its ability to predict the Zn uptake by rice seedlings. Uptake of the nutrient is, therefore, determined by the rate of nutrient supply to the root surface by mass flow and diffusion. Inter root competition and time dependent root density are accounted for by soil volume that delivers nutrients. The radii of these cylinders decline with increasing density. Since mass flow and diffusion each supply zinc to the root, the process can be described mathematically using the model of Barber-Cushman (1984). The 11 parameters of the model for the uptake by rice cultivars were measured by established experimental techniques. Zinc uptake at different growth stages predicted by the model was compared to measured zinc uptake by rice cultivars grown on sandy loam soil in a green house. Predicted zinc uptake was significantly correlated with observed uptake r 2=0.99**. Sensitivity analysis was also used to investigate the impact of changes in soil nutrient supply, root morphological and root uptake kinetic parameters on simulated nutrient uptake. Overall results of sensitivity analysis indicate that the half distance between root axes, rate of root growth and water flux affect the uptake of zinc particularly at their higher values rather than at lower values and DaZn is the most sensitive parameter for zinc uptake at its lower values.  相似文献   

10.
Rice cultivar evaluation for phosphorus use efficiency   总被引:12,自引:1,他引:11  
Phosphorus deficiency is one of the most growth-limiting factors in acid soils in various parts of the world. The objective of this study was to screen 25 rice cultivars (Oryza sativa L.) at low, medium, and high levels of soil P. Number of tillers, root length, plant height, root dry weight and shoot dry weight were related to tissue P concentrations, P uptake and P-use efficiency. Shoot weight was found to be the plant parameter most sensitive to P deficiency. Significant cultivar differences in P use efficiency were found. Phosphorus use efficiency was higher in roots than shoots and decreased with increasing levels of soil P. Positive correlations were found among growth parameters such as plant height, tillers, root and shoot weight, and P content of roots and shoots. These results indicate selection of rice cultivars for satisfactory performance under low P availability can be carried out using shoot and root dry weight as criteria.  相似文献   

11.
White clover (Trifolium repens L.) plants were grown in a calcareous soil in pots with three compartments, a central one for root growth and two outer ones for growth of vesicular-arbuscular (VA) mycorrhizal (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe) hyphae (hyphal compartments). Phosphorus (P) was applied at three levels (0, 20 and 50 mg kg−1 soil) in the outer compartments in mycorrhizal treatments. Root and shoot dry weight were increased in mycorrhizal plants with hyphal access to outer compartments. Growth of the mycorrhizal hyphae in the outer compartments was not significantly affected by variation in P level in these compartments. However, both concentration and amount of P in roots and shoots sharply increased with increasing P supply in the outer (hyphal) compartments. With increasing P levels the calculated delivery of P by the hyphae from the outer compartments increased from 34% to 90% of total P uptake. Hyphal access to the outer compartments also significantly increased both concentration and quantity of Cu in the plants. The calculated delivery of Cu by the hyphae from the outer compartments ranged from 53% to 62% of total Cu uptake, irrespective of the P levels and the amounts of P taken up and transported by the hyphae. However, the distribution of Cu over roots and shoots was largely dependent on P levels. With increase in P level in the outer compartments the calculated hyphal contribution to the total amount of Cu in the shoots increased from 12% to 58%, but decreased in the roots from 75% to 46%. In conclusion, uptake and transport by VA-mycorrhizal hyphae may contribute substantially not only to P nutrition, but also to Cu nutrition of the host.  相似文献   

12.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
To test the hypothesis that high levels of soluble phosphate applied in combination with VAM fungi, to citrus plants, can cause growth depression even in the absence of other limiting factors, and also to test if rock phosphate, under these conditions, may be a satisfactory P source, a greenhouse experiment was conducted using sterilized soil with four levels of phosphate (0, 50, 100 and 200 ppm P) supplied either as soluble P or as rock phosphate. Citrus seedlings were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or left uninoculated. Six months after the start of the experiment, the plants were harvested and shoot dry weight, P and K uptake, root colonization and the number of spores in 50 cm3 of soil were determined. Significant increases were found in dry matter yields and in P and K contents, due to VAM fungus inoculation, at the zero and 50 ppm soluble P levels and at all rock phosphate levels. At 100 ppm soluble P, the development of VAM plants was equilvalent to that of non-VAM plants, and at 200 ppm, growth was significantly less than that of non-VAM plants. Root colonization and sporulation were reduced at higher P levels. The absolute growth depression of VAM plants at the higher P level was likely due to P toxicity. In addition, high leaf P and K concentrations may have interfered with carbohydrate distribution and utilization in these symbioses. Rock phosphate may be used with VAM citrus to substitute for medium amounts of soluble phosphate.  相似文献   

14.
The effect of inorganic nitrogen (N) fertilizer on the ionic composition of the soil solution under maize (Zea mays L.) was studied. A pot experiment was carried out with two treatments combined factorially, with or without N application (Ca(NO3)2; +N and –N treatments, respectively), and with or without plants. Three looped hollow fiber samplers were installed in each pot to sample soil solutions nondestructively from the root zone, seven times during the 50-day growth period. Plants were harvested on the 50th day, and their nutrient contents determined.Effects of N fertilizer on the soil solutions were observed by the first sampling, 2 days after sowing. The concentrations of Ca and NO3 and electrical conductivity (EC) increased significantly in the +N treatments as direct effects of fertilizer application. In addition, the concentrations of Mg, K, Na and H+ also increased and that of P decreased significantly as indirect effects caused by the re-establishment of chemical equilibria. This suggested the greater supply as well as the greater possibility of leaching loss not only of NO3 but also of Ca, Mg and K. In the treatments with plants, the concentrations of NO3 , Ca, Mg and K decreased with time and pH increased significantly compared with the unplanted soil. The depletion of N in the soil solution roughly agreed with the amount of N taken up by the plant. The depletions of K from the soil solution amounted to less than 10% of the amount of the K taken up, suggesting intensive replenishment of K from exchange sites in the soil. Depletions of Ca and Mg were several times higher than the amounts taken up, indicating that the depletions resulted from the adsorption of the divalent cations by the soil rather than uptake by plants. Because NO3 is hardly absorbed by exchange sites in soil and was the dominant anion in solution, it was concluded that NO3 had a major role in controlling cation concentrations in the soil solution and, consequently, on their availability for uptake by plants as well as their possible leaching loss. ei]H Marschner  相似文献   

15.
We hypothesized that the grazing of vesicular-arbuscular mycorrhizal (VAM) hyphae by soil animals could be responsible for the lack of a direct relationship between mycorrhizal infection intensity and nutrient uptake under field conditions. To test this hypothesis, we determined the effect of a range of densities of the collembola, Folsomia candida, on growth, VAM infection, and P uptake in Geranium robertianum, a common forest herb, under greenhouse conditions. Total and aboveground growth were greater at low collembola density than either at higher collembola density or without collembola. These differences were greater when the plants were grown in a high organic content soil mix than when grown in sand. Root mass was not affected by collembola density. In the soil mix, root length decreased with increasing collembola density, but not in the sand. The percent of root length infected with VAM was lower at any collembola density than when collembola were absent. Total infected root length decreased linearly with increasing collembola density. Few significant differences in P uptake or tissue concentration were found. Thus, plant growth (but not P uptake) may be stimulated at low collembola density and inhibited at high. We discuss mechanisms which may be responsible for this non-linear response, and the implications of the pattern of response to studies of plant competition, nutrient turnover, and revegetation.  相似文献   

16.
R. C. Dalal 《Plant and Soil》1982,66(2):265-269
Summary The phosphatase activity of the soil amended with roots and tops of clover (Trifolium repens) plant material (0.1% by weight) remained essentially constant in the absence of growing plants but changed considerably in the presence of plants (Avena sativa) grown for 10 weeks. There was a significant relationship between the phosphatase activity and organic and inorganic P in the soil solution only in the presence of growing plants. The differences in phosphatase activity between roots and tops amended soil were attributed to total C as well as differences in the degree of availability of C added through plant materials. This may also apply to the carpet grass (Axonopus affinis) amended soil.  相似文献   

17.
The sucrose transporter SUT1 functions in phloem loading of photoassimilates in solanaceous plant species. In the present study, wildtype and transgenic potato plants with either constitutive overexpression or antisense inhibition of SUT1 were grown under high or low phosphorus (P) fertilization levels in the presence or absence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices. At a low soil P fertilization level, the extent of AM fungal root colonization was not different among the genotypes. In all plants, the AM symbiosis contributed significantly to P uptake under these conditions. In response to a high soil P fertilization level, all genotypes showed a decrease in AM fungal root colonization, indicating that the expression level of SUT1 does not constitute a major mechanism of control over AM development in response to the soil P availability. However, plants with overexpression of SUT1 showed a higher extent of AM fungal root colonization compared with the other genotypes when the soil P availability was high. Whether an increased symbiotic C supply, alterations in the phytohormonal balance, or a decreased synthesis of antimicrobial compounds was the major cause for this effect requires further investigation. In plants with impaired phloem loading, a low C status of plant sink tissues did apparently not negatively affect plant C supply to the AM symbiosis. It is possible that, at least during vegetative and early generative growth, source rather than sink tissues exert control over amounts of C supplied to AM fungi.  相似文献   

18.
Mineral nutrition and growth of tropical maize as affected by soil acidity   总被引:11,自引:0,他引:11  
Soil constraints linked to low pH reduce grain yield in about 10% of the maize growing area in tropical developing countries. The aim of this research was to elucidate the reasons for this maize yield reduction on an oxisol of Guadeloupe. The field experiment had two treatments: the native non-limed soil (NLI, pH 4.5, 2.1 cmol Al kg–1, corresponding to 20% Al saturation), and the same soil limed 6 years prior to the experiment (LI, pH 5.3, 0 cmol Al kg–1). The soils were fertilized with P and N. The above-ground biomass, root biomass at flowering, grain yield and yield components, leaf area index (LAI), light interception, radiation-use-efficiency (RUE), P and N uptake, soil water storage, and soil mineral N were measured during the maize cycle. The allometric relationships between shoot N concentration, LAI and above-ground biomass in LI were similar to those reported for maize cropped in temperate regions, indicating that these relationships are also useful to describe maize growth on tropical soils without Al toxicity. In NLI, soil acidity severely affected leaf appearance, leaf size and consequently the LAI, which was reduced by 60% at flowering, although the RUE was not affected. Therefore, the reduction in the above-ground biomass (30% at flowering) and grain yield (47%) were due to the lower LAI and light interception. At flowering, the root/shoot ratio was 0.25 in NLI and 0.17 in LI, and the root biomass in NLI was reduced by 64% compared to LI. Nitrogen uptake was also reduced in NLI in spite of high soil N availability. Nevertheless, shoot N concentration vs aboveground biomass showed a typical decline in both treatments. In NLI, the shoot P concentration vs above-ground biomass relationship showed an increase in the early stages, indicating that P uptake and root-shoot competition for the absorbed P in the early plant stages controlled the establishment and the development of the leaf area.  相似文献   

19.
Field experiments were carried out on a temperate soil to determine the decline rate, the stabilization in soil organic matter and the plant uptake of N from 15N-labelled crop residues. The fate of N from field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) residues was followed in unplanted and planted plots and related to their chemical composition. In the top 10 cm of unplanted plots, inorganic N was immobilized after barley residue incorporation, whereas the inorganic N pool was increased during the initial 30 days after incorporation (DAI) of pea residues. Initial net mineralization of N was highly correlated to the concentrations of soluble C and N and the lignin: N ratio of residues. The contribution of residue-derived N to the inorganic N pool was at its maximum 30 DAI (10–55%) and declined to on average 5% after 3 years of decomposition.Residual organic labelled N in the top 10 cm soil declined rapidly during the initial 86 DAI for all residue types. Leaching of soluble organic materials may have contributed to this decline. At 216 DAI 72, 59 and 45% of the barley, mature pea and green pea residue N, respectively, were present in organic N-forms in the topsoil. During the 1–3 year period, residual organic labelled N from different residues declined at similar rates, mean decay constant: 0.18 yr-1. After 3 years, 45% of the barley and on average 32% of the pea residue N were present as soil organic N. The proportion of residue N remaining in the soil after 3 years of decomposition was most strongly correlated with the total and soluble N concentrations in the residue. The ratio (% inorganic N derived from residues): (% organic N derived from residues) was used as a measure of the rate residue N stabilization. From initial values of 3–7 the ratios declined to on average 1.9 and 1.6 after 2 and 3 yrs, respectively, indicating that a major part of the residue N was stabilized after 2 years of decomposition. Even though the largest proportion of residue N stabilized after 3 years was found for barley, the largest amount of residue N stabilized was found with incorporation of pea residues, since much more N was incorporated with these residues.In planted plots and after one year of decomposition, 7% of the pea and 5% of the barley residue N were recovered in perennial ryegrass (Lolium perenne L.) shoots. After 2 years the cumulative recovery of residue N in ryegrass shoots and roots was 14% for pea and 15% for barley residue N. The total uptake of non-labelled soil N after 2 years of growth was similar in the two residue treatments, but the amount of soil N taken up in each growth period varied between the treatments, apparently because the soil N immobilized during initial decomposition of residues was remineralized later in the barley than in the pea residue treatment. Balances were established for the amounts of barley and mature pea residue N remaining in the 0–10 cm soil layer and taken up in ryegrass after 2 years of decomposition. About 24% of the barley and 35% of the pea residue N were unaccounted for. Since these apparent losses are comparable to almost twice the amounts of pea and barley residue N taken up by the perennial ryegrass crop, there seems to be a potential for improved crop residue management in order to conserve nutrients in the soil-plant system.  相似文献   

20.
Summary The acid permanganate method proposed as a chemical index of soil nitrogen (N) availability simply measures the mineralizable N. A modification of the method has been proposed that allows the estimation of soil mineral N simultaneously. The N values obtained by the modified method correlated highly significantly with the mineral N of incubation test (r=0.80,P<0.01) and plant uptake (r=0.69,P<0.01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号