首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isopeptides of the newly discovered peptide family, endothelins (ET), caused a concentration-dependent increase in intracellular free [Ca2+] ([Ca2+]i) in human glomerular mesangial cells. ET isopeptides and sarafotoxin S6b caused transient and sustained [Ca2+]i waveforms which resulted from mobilization of intracellular Ca2+ stores and from Ca2+ influx through a dihydropyridine-insensitive Ca2+ channel. Ca2+ signaling evoked by ET isopeptides underwent a marked adaptive, desensitization response. Although activation of protein kinase C attenuated ET-induced Ca2+ signaling, desensitization by ET isopeptides was independent of protein kinase C. High concentrations of ET-1 and ET-2 also caused oscillations of [Ca2+]i that partially depended on extracellular Ca2+. These results suggest that an increase in [Ca2+]i constitutes a common pathway of signal transduction for the ET peptide family.  相似文献   

2.
3.
Rat glomerular mesangial cell monolayers loaded with the fluorescent probe fura-2 responded to exogenous platelet-activating factor (PAF) with a rapid increase in cytosolic free calcium concentration ([Ca2+]i). PAF-induced [CA2+]i transients consisted of a dose-dependent phasic peak response followed by a sustained tonic phase of increased [Ca2+]i. Chelation of extracellular calcium with EGTA suppressed the tonic phase of increased [Ca2+]i but did not affect the phasic peak response. This suggests two mechanisms for the elevation of [Ca2+]i: a transient mobilization from intracellular stores and an enhanced calcium influx across the plasma membrane, possibly mediated by receptor-operated channels. Lyso-PAF had no effect on basal [Ca2+]i and the PAF-receptor antagonist L652,731 selectively inhibited responses to PAF. PAF-stimulated mesangial cells displayed homologous desensitization to reexposure to PAF while still being responsive to other calcium-mobilizing agonists. Preincubation of cells with the protein kinase C (PKC) activator phorbol myristate acetate diminished the PAF-induced [Ca2+]i transient, suggesting a regulatory role for PKC in PAF-activation of mesangial cells. An increase in [Ca2+]i, as a result of receptor-linked activation of phospholipase C, may mediate PAF-induced hemodynamic and inflammatory events in renal glomeruli.  相似文献   

4.
We found that human chymase selectively produces 31-amino-acid length endothelins (1-31) (ETs(1-31)). We investigated the effect of synthetic ET-1(1-31) on intracellular free Ca2+ concentration ([Ca2+]i) in cultured human mesangial cells. ET-1(1-31) increased [Ca2+]i in a concentration-dependent manner to a similar extent as ET-1. The ET-1 (1-31)-induced [Ca2+]i increase was not influenced by removal of extracellular Ca2+ but was inhibited by thapsigargin. ET-1(1-31)-induced [Ca2+]i increase was not affected by phosphoramidon. It was inhibited by BQ123, but not by BQ788. These results suggest that ET-1(1-31) by itself exhibits bioactive properties probably through endothelin ET(A) or ET(A)-like receptors. Since human chymase has been reported to exist in the kidney, ET-1(1-31) may be a candidate substance for mesangium-relevant diseases.  相似文献   

5.
6.
内皮素对培养心肌细胞内游离钙浓度的作用   总被引:5,自引:0,他引:5  
Wang TH  Wu B  Zhu XN  Pan JY 《生理学报》1999,51(4):391-396
实验用培养新生SD大鼠心室肌细胞,以Fura-2/AM荧光指示剂负载检测收肌细胞内游离钙浓度(「Ca^2+」)的变化,探讨内皮素-1(ET-1)对「Ca^2+」i的作用及其机制。结果显示:ET-1引起心肌细胞「Ca^2+」i升高有两个时相,瞬时相持续相。ET-1诱导的瞬时相「Ca^2+」i升高呈浓度依赖性,预先用ETA特异性受阻断剂BQ123处理,可阻断ET-1引起的「Ca^2+」i升高,揭示上述  相似文献   

7.
In quiescent cultures of Swiss 3T3 cells, prostaglandin E1 (PGE1) known to elevate cAMP increased rapidly cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured with the fluorescent Ca2+ indicator quin2. The primary source of the PGE1-induced elevation of [Ca2+]i was extracellular. Pretreatment of the cells with various doses of 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent protein kinase C-activating phorbol ester, inhibited the PGE1-induced elevation of [Ca2+]i in a dose-dependent manner. Inversely, TPA enhanced slightly the PGE1-induced increase of cAMP. TPA alone did not affect the basal level of [Ca2+]i or cAMP in the absence of PGE1. The inhibitory action of TPA on the PGE1-induced elevation of [Ca2+]i was mimicked by other protein kinase C-activating agents such as phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol. 4 alpha-Phorbol 12,13-didecanoate known to be inactive for protein kinase C was ineffective in this capacity. Prolonged treatment of the cells with phorbol 12,13-dibutyrate resulted in the down-regulation and disappearance of protein kinase C. In these protein kinase C-deficient cells, PGE1 still elevated [Ca2+]i to the same extent as that in the control cells, but TPA did not inhibit the PGE1-induced elevation of [Ca2+]i. These results strongly suggest that protein kinase C serves as an inhibitor for PGE1-induced Ca2+ influx in Swiss 3T3 cells.  相似文献   

8.
The effect of endothelin (ET) on the cytosolic-free calcium [(Ca2+]i) changes in polymorphonuclear leukocytes (PMN) from normal humans and Wistar rats was investigated. ET induced a dose-related [Ca2+]i peak. This [Ca2+]i transient was blunted by TMB-8 (10(-5)M) and by Ca(2+)-free EGTA medium, therefore suggesting a role of both intracellular Ca2+ release and Ca2+ influx in the generation of the [Ca2+]i peak. Preincubation of PMN with the nitric oxide (NO)-donor L-arginine (L-Arg) markedly blocked the ET-induced [Ca2+]i transient in an enantiomerically-specific manner. A similar blunting effect of L-Arg on the fMLP (10(-7)M)-induced [Ca2+]i transient was detected. The L-Arg antagonist, NG-monomethyl-L-arginine (L-NMMA), reverted the L-Arg blocking effect on both ET- and fMLP-induced [Ca2+]i transients. These data suggest that ET has a potential role in activating Ca2+ mobilization in PMN, an effect that can be inhibited by L-Arg.  相似文献   

9.
T Emori  Y Hirata  F Marumo 《FEBS letters》1990,263(2):261-264
Among three endothelin (ET) isopeptides, ET-3 shows the most potent initial depressor response through the endothelium-dependent mechanism. We studied the presence of specific binding sites for ET-3 in cultured bovine endothelial cells (EC) and its cellular mechanism of action. Binding studies revealed the presence of two distinct subclasses of ET-3 receptors with high and low affinities. ET-3 dose-dependently (10(-10)-10(-7) M) increased both intracellular Ca2+ levels ([Ca2+]i) and inositol trisphosphate (IP3) formation. The ET-3-induced increase in [Ca2+]i was not affected by either removal of extracellular Ca2+ or Ca2(+)-channel blockers. These data suggest that ET-3 induces phosphoinositide breakdown and increase in [Ca2+]i in ECs, possibly resulting from intracellular Ca2+ mobilization, thereby leading to vasodilatation.  相似文献   

10.
The interaction between beta-adrenergic signaling and the activation of protein kinase C in alveolar type II cell plays an important role in the regulation of surfactant secretion because the combined application of beta-adrenergic agonist with protein kinase C activator to the cells stimulates the secretion synergistically. However, the mechanisms underlying the interaction are not clear. In the present study, we examined the combined effect of terbutaline with phorbol 12-myristate 13-acetate (PMA) on cytoplasmic free Ca2+ concentration ([Ca2+]i) in rat alveolar type II cells. The combined application of terbutaline with PMA to the cells rapidly increased [Ca2+]i, although neither of them affected it by itself. Similar increases of [Ca2+]i were observed in other combinations, such as terbutaline with 1-oleoyl-2-acetyl-sn-glycerol, and forskolin with PMA. Either the removal of extracellular Ca2+ or the addition of Co2+ remarkably suppressed the increase of [Ca2+]i induced by the combination of terbutaline with PMA. In addition, Co2+ inhibited the phosphatidylcholine secretion induced by the combination of terbutaline and PMA. These results suggested that the [Ca2+]i increased as a result of the interaction between formation of cyclic AMP and activation of protein kinase C in alveolar type II cells, and that the increase in [Ca2+]i was mediated by the Ca2+ influx through the plasma membrane. This mechanism to modulate [Ca2+]i may play a role in the regulation of surfactant secretion by alveolar type II cells.  相似文献   

11.
The effect of the antidepressant sertraline on cytosolic-free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells is unclear. This study explored whether sertraline changed basal [Ca2+]i levels in suspended MDCK cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Sertraline at concentrations between 1and 100 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+ implicating Ca2+ entry and release both contributed to the [Ca2+]i rise. Sertraline induced Mn2+ influx, leading to quench of fura-2 fluorescence, suggesting Ca2+ influx. This Ca2+ influx was inhibited by suppression of phospholiapase A2 but not by store-operated Ca2+ channel blockers and protein kinase C/A modulators. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitors nearly abolished sertraline-induced Ca2+ release. Conversely, pretreatment with sertraline partly reduced inhibitor-induced [Ca2+]i rise, suggesting that sertraline released Ca2+ from endoplasmic reticulum. Inhibition of phospholipase C did not much alter sertraline-induced [Ca2+]i rise. Collectively, in MDCK cells, sertraline induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive Ca2+ channels.  相似文献   

12.
J Kishino  K Hanasaki  T Kato  H Arita 《FEBS letters》1991,280(1):103-106
We studied the presence of specific binding sites for endothelin (ET) and the effect of ET on cytosolic free Ca2+ concentration ([Ca2+]i) in murine thioglycolate-activated peritoneal macrophages. Scatchard analysis for binding experiments using [125I]ET-1 or [125I]ET-3 revealed the existence of a single class of binding sites. The binding parameters (Kd and Bmax) for [125I]ET-1 were almost identical to those for [125I]ET-3. In addition, unlabeled 3 ET isopeptides (ET-1, ET-2 and ET-3) inhibited the specific binding of both ET-1 and ET-3 with similar inhibitory potencies. All 3 ET isopeptides caused an increase in [Ca2+]i in the same dose-dependent manner (0.01-100 nM). These results demonstrate the existence of an ET receptor with the same affinity for all isoforms that mediates the ET-induced intracellular Ca2+ mobilization in murine peritoneal macrophages.  相似文献   

13.
The effect of chronic hypoxia (CH) for 14 days on Ca2+ signaling and contraction induced by agonists in the rat main pulmonary artery (MPA) was investigated. In MPA myocytes obtained from control (normoxic) rats, endothelin (ET)-1, angiotensin II (ANG II), and ATP induced oscillations in intracellular Ca2+ concentration ([Ca2+]i) in 85-90% of cells, whereas they disappeared in myocytes from chronically hypoxic rats together with a decrease in the percentage of responding cells. However, both the amount of mobilized Ca2+ and the sources of Ca2+ implicated in the agonist-induced response were not changed. Analysis of the transient caffeine-induced [Ca2+]i response revealed that recovery of the resting [Ca2+]i value was delayed in myocytes from chronically hypoxic rats. The maximal contraction induced by ET-1 or ANG II in MPA rings from chronically hypoxic rats was decreased by 30% compared with control values. Moreover, the D-600- and thapsigargin-resistant component of contraction was decreased by 40% in chronically hypoxic rats. These data indicate that CH alters pulmonary arterial reactivity as a consequence of an effect on both Ca2+ signaling and Ca2+ sensitivity of the contractile apparatus. A Ca2+ reuptake mechanism appears as a CH-sensitive phenomenon that may account for the main effect of CH on Ca2+ signaling.  相似文献   

14.
Activation of neutrophils by most soluble stimuli is associated with a marked increase in intracellular free Ca2+ ([Ca2+]i). However, under physiological conditions (Na+-rich media), the potent activator 12-O-tetradecanoylphorbol-13-acetate (TPA) causes no change or a decrease in [Ca2+]i. We report here that the [Ca2+]i response to phorbol esters varies depending on the ionic composition of the medium. A marked increase in [Ca2+]i was detected in Na+-free solutions. Maximal effects were observed when N-methyl-D-glucammonium+ or choline+ were substituted for Na+, whereas an intermediate response was recorded in K+ medium. The increase in [Ca2+]i was substantially (approximately 65%) inhibited by removal of external Ca2+. A [Ca2+]i increase was also elicited by other beta-phorbol diesters and by diacylglycerol, but not by unesterified phorbol or by alpha-phorbol diesters, indicating involvement of protein kinase C. The increase in [Ca2+]i observed in Na+-free media is not due to inhibition of Na+/Ca2+ exchange, since no change in [Ca2+]i in response to TPA was observed in: 1) cells suspended in Li+, which is not countertransported for Ca2+; 2) cells preloaded with Na+ to eliminate the driving force for Na+/Ca2+ exchange; and 3) cells treated with 3',4'-dichlorobenzamyl, an inhibitor of Na+/Ca2+ exchange. Similarly, the [Ca2+]i increase in Na+-free media is not linked to the absence of Na+/H+ exchange and the associated cytoplasmic acidification since: 1) it was not observed in Na+ media in the presence of inhibitors of the Na+/H+ antiport and 2) it was not mimicked by inducing acidification with nigericin. Pretreatment with pertussis toxin largely inhibited the phorbol ester-induced change in [Ca2+]i, while activation of protein kinase C under these conditions was unaffected. It is concluded that in the absence of extracellular Na+ (or Li+), activation of protein kinase C leads to a net Ca2+ influx into the cytoplasm through a process mediated by a GTP-binding or G protein. Opening of a Na+-sensitive Ca2+ channel could partially explain these observations. Alternatively, the nature of the monovalent cation could conceivably affect the conformation of a G protein or of an associated receptor, inducing the appearance of a site susceptible to an activating phosphorylation by protein kinase C.  相似文献   

15.
The effect of the antidepressant paroxetine on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unclear. This study explored whether paroxetine changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Paroxetine at concentrations between 100-1,000 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 50% by removing extracellular Ca2+. Paroxetine-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and protein kinase C modulators. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished paroxetine-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not alter paroxetine-induced [Ca2+]i rise. Paroxetine at 10-50 microM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Propidium iodide staining suggests that apoptosis plays a role in the death. Collectively, in OC2 cells, paroxetine induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via store-operated Ca2+ channels in a manner regulated by protein kinase C and phospholipase A2. Paroxetine (up to 50 microM) induced cell death in a Ca2+-independent manner.  相似文献   

16.
Single pituitary gonadotrophs exhibit episodes of spontaneous fluctuations in cytoplasmic calcium concentration [( Ca2+]i) due to entry through voltage-sensitive calcium channels (VSCC) and show prominent agonist-induced oscillations in [Ca2+]i that are generated by periodic release of intracellular Ca2+. Gonadotropin releasing hormone (GnRH) elicited three types of Ca2+ responses: at low doses, subthreshold, with an increase in basal [Ca2+]i; at intermediate doses, oscillatory, with dose-dependent modulation of spiking frequency; and at high doses, biphasic, without oscillations. Elevation of [Ca2+]i or activation of protein kinase C (PKC) did not influence the frequency of agonist-induced [Ca2+]i spikes but caused dose-dependent reductions in amplitude for all types of Ca2+ response. Stimulation of transient Ca2+ spikes by GnRH was followed by inhibition of the spontaneous fluctuations. GnRH also reduced the ability of high extracellular K+ to promote Ca2+ influx through VSCC. Activation of PKC by phorbol esters stimulated Ca2+ influx in quiescent cells but inhibited influx when VSCC were already activated, either spontaneously or by high K+. In contrast to their biphasic actions on [Ca2+]i, phorbol esters exerted only stimulatory actions on gonadotropin release, even when Ca2+ influx was concomitantly reduced. However, pituitary cells had to be primed with an appropriate [Ca2+]i level before exocytosis could be amplified by PKC. In PKC-depleted cells, all actions of phorbol esters on Ca2+ entry and amplitude modulation, and on LH release, were abolished. GnRH-induced LH secretion was also significantly reduced, especially the plateau phase of the response. These data indicate that Ca2+ and PKC serve as interacting signals during the cascade of cellular events triggered by agonist stimulation, in which Ca2+ turns cell responses on or off, and PKC amplifies the positive and negative effects of Ca2+.  相似文献   

17.
Members of the bombesin family of peptides potently stimulate insulin release by HIT-T15 cells, a clonal pancreatic cell line. The response to bombesin consists of a large burst in secretion during the first 30 s, followed by a smaller elevation of the secretory rate, which persists for 90 min. The aim of this study was to identify the intracellular messengers involved in this biphasic secretory response. Addition of 100 nM-bombesin to cells for 20 s increased the cellular accumulation of [3H]diacylglycerol (DAG) by 40% and that of [3H]inositol monophosphate (InsP), bisphosphate (InsP2) and trisphosphate (InsP3) by 40%, 300%, and 800%, respectively. In contrast, cyclic AMP concentrations were unaffected. Bombesin stimulation of [3H]InsP3 formation was detected at 2 s, before the secretory response, which was not measurable until 5 s. Furthermore, the potency of bombesin to stimulate [3H]InsP3 generation (ED50 = 14 +/- 9 nM) agreed with its potency to stimulate insulin release (ED50 = 6 +/- 2 nM). Consistent with its effects on [3H]InsP3 formation, bombesin raised the intracellular free Ca2+ concentration [( Ca2+]i) from a basal value of 0.28 +/- 0.01 microM to a peak of 1.3 +/- 0.1 microM by 20 s. Chelation of extracellular Ca2+ did not abolish either the secretory response to bombesin or the rise in [Ca2+]i, showing that Ca2+ influx was not required. Although the Ca2+ ionophore ionomycin (100 nM) mimicked the [Ca2+]i response to bombesin, it did not stimulate secretion. However, pretreating cells with ionomycin decreased the effects of bombesin on both [Ca2+]i and insulin release, suggesting that elevation of [Ca2+]i was instrumental in the secretory response to this peptide. To determine the role of the DAG produced upon bombesin stimulation, we examined the effects of another activator of protein kinase C, the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA did not affect [Ca2+]i, but it increased insulin secretion after a 2 min lag. However, an immediate increase in secretion was observed when ionomycin was added simultaneously with TPA. These data indicate that the initial secretory burst induced by bombesin results from the synergistic action of the high [Ca2+]i produced by InsP3 and DAG-activated protein kinase C. However, activation of protein kinase C alone appears to be sufficient for a sustained secretory response.  相似文献   

18.
Diperoxovanadate (DPV), a potent inhibitor of protein tyrosine phosphatases and activator of tyrosine kinases, alters endothelial barrier function via signaling pathways that are incompletely understood. One potential pathway is Src kinase-mediated tyrosine phosphorylation of proteins such as cortactin that regulate endothelial cell (EC) cytoskeleton assembly. As DPV modulates endothelial cell signaling via protein tyrosine phosphorylation, we determined the role of DPV-induced intracellular free calcium concentration ([Ca2+]i) in activation of Src kinase, cytoskeletal remodeling, and barrier function in bovine pulmonary artery endothelial cells (BPAECs). DPV in a dose- and time-dependent fashion increased [Ca2+]i, which was partially blocked by the calcium channel blockers nifedipine and Gd3+. Treatment of cells with thapsigargin released Ca2+ from the endoplasmic reticulum, and subsequent addition of DPV caused no further change in [Ca2+]i. These data suggest that DPV-induced [Ca2+]i includes Ca release from the endoplasmic reticulum and Ca influx through store-operated calcium entry. Furthermore, DPV induced an increase in protein tyrosine phosphorylation, phosphorylation of Src and cortactin, actin remodeling, and altered transendothelial electrical resistance in BPAECs. These DPV-mediated effects were significantly attenuated by BAPTA (25 microM), a chelator of [Ca2+]i. Immunofluorescence studies reveal that the DPV-mediated colocalization of cortactin with peripheral actin was also prevented by BAPTA. Chelation of extracellular Ca2+ by EGTA had marginal effects on DPV-induced phosphorylation of Src and cortactin; actin stress fibers formation, however, affected EC barrier function. These data suggest that DPV-induced changes in [Ca2+]i regulate endothelial barrier function using signaling pathways that involve Src and cytoskeleton remodeling.  相似文献   

19.
Our objectives were to identify the relative contributions of intracellular free Ca2+ concentration ([Ca2+]i) and myofilament Ca2+ sensitivity in the pulmonary artery smooth muscle (PASM) contractile response to the alpha-adrenoreceptor agonist phenylephrine (PE) and to assess the role of PKC, tyrosine kinases (TK), and Rho kinase (ROK) in that response. Our hypothesis was that multiple signaling pathways are involved in the regulation of [Ca2+]i, myofilament Ca2+ sensitization, and vasomotor tone in response to alpha-adrenoreceptor stimulation of PASM. Simultaneous measurement of [Ca2+]i and isometric tension was performed in isolated canine pulmonary arterial strips loaded with fura 2-AM. PE-induced tension development was due to sarcolemmal Ca2+ influx, Ca2+ release from inositol 1,4,5-trisphosphate-dependent sarcoplasmic reticulum Ca2+ stores, and myofilament Ca2+ sensitization. Inhibition of either PKC or TK partially attenuated the sarcolemmal Ca2+ influx component and the myofilament Ca2+ sensitizing effect of PE. Combined inhibition of PKC and TK did not have an additive attenuating effect on PE-induced Ca2+ sensitization. ROK inhibition slightly decreased [Ca2+]i but completely inhibited myofilament Ca2+ sensitization. These results indicate that PKC and TK activation positively regulate sarcolemmal Ca2+ influx in response to alpha-adrenoreceptor stimulation in PASM but have relatively minor effects on myofilament Ca2+ sensitivity. ROK is the predominant pathway mediating PE-induced myofilament Ca2+ sensitization.  相似文献   

20.
Lipopolysaccharide (LPS)-activated macrophages are pivotal in innate immunity. With LPS treatment, extracellular signals are transduced into macrophages via Toll-like receptor 4 and induce inflammatory mediator production by activating signaling pathways, including the nuclear factor-kappaB (NF-kappaB) pathway and the mitogen-activated protein kinase (MAPK) pathway. However, the mechanisms by which the intracellular free Ca2+ concentration ([Ca2+]i) increases and protein kinase C (PKC) is activated remain unclear. Therefore, we investigated the signaling pathway for Ca2+- and PKC-dependent NF-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha (TNF-alpha) production in LPS-stimulated rat peritoneal macrophages. The results demonstrated that the LPS-induced transient [Ca2+]i increase is due to Ca2+ release and influx. Extracellular and intracellular Ca2+ chelators inhibited phosphorylation of PKCalpha and PKCbeta. A PKCbeta-specific and a general PKC inhibitor blunted phosphorylation of serine in mitogen-activated/extracellular signal-regulated kinase kinase kinase (MEKK) 1. Moreover, a MEKK inhibitor reduced activation of inhibitorykappaB kinase and NF-kappaB. Upstream of the [Ca2+]i increase, a protein-tyrosine kinase inhibitor reduced phosphorylation of phospholipase C (PLC) gamma. Furthermore, a PLC inhibitor eliminated the transient [Ca2+]i increase and decreased the amount of activated PKC. Therefore, these results revealed the following roles of Ca2+ and PKC in the signaling pathway for NF-kappaB activation in LPS-stimulated macrophages. After LPS treatment, protein-tyrosine kinase mediates PLCgamma1/2 phosphorylation, which is followed by a [Ca2+]i increase. Several PKCs are activated, and PKCbeta regulates phosphorylation of serine in MEKK1. Moreover, MEKKs regulate inhibitory kappaB kinase activation. Sequentially, NF-kappaB is activated, and inducible nitric-oxide synthase and tumor necrosis factor-alpha production is promoted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号