首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Illumina Infinium SNP genotyping array was constructed for European white oaks. Six individuals of Quercus petraea and Q. robur were considered for SNP discovery using both previously obtained Sanger sequences across 676 gene regions (1371 in vitro SNPs) and Roche 454 technology sequences from 5112 contigs (6542 putative in silico SNPs). The 7913 SNPs were genotyped across the six parental individuals, full‐sib progenies (one within each species and two interspecific crosses between Q. petraea and Q. robur) and three natural populations from south‐western France that included two additional interfertile white oak species (Q. pubescens and Q. pyrenaica). The genotyping success rate in mapping populations was 80.4% overall and 72.4% for polymorphic SNPs. In natural populations, these figures were lower (54.8% and 51.9%, respectively). Illumina genotype clusters with compression (shift of clusters on the normalized x‐axis) were detected in ~25% of the successfully genotyped SNPs and may be due to the presence of paralogues. Compressed clusters were significantly more frequent for SNPs showing a priori incorrect Illumina genotypes, suggesting that they should be considered with caution or discarded. Altogether, these results show a high experimental error rate for the Infinium array (between 15% and 20% of SNPs potentially unreliable and 10% when excluding all compressed clusters), and recommendations are proposed when applying this type of high‐throughput technique. Finally, results on diversity levels and shared polymorphisms across targeted white oaks and more distant species of the Quercus genus are discussed, and perspectives for future comparative studies are proposed.  相似文献   

2.
Allotetraploid white clover (Trifolium repens L.), a cool-season perennial legume used extensively as forage for livestock, is an important target for marker-assisted breeding. A genetic linkage map of white clover was constructed using simple sequence repeat (SSR) markers based on sequences from several Trifolieae species, including white clover, red clover (T. pratense L.), Medicago truncatula (Gaertn.) and soybean (Glycine max L.). An F1 population consisting of 179 individuals, from a cross between two highly heterozygous genotypes, GA43 and Southern Regional Virus Resistant, was used for genetic mapping. A total of 1,571 SSR markers were screened for amplification and polymorphism using DNA from two parents and 14 F1s of the mapping population. The map consists of 415 loci amplified from 343 SSR primer pairs, including 83 from white clover, 181 from red clover, 77 from M. truncatula, and two from soybean. Linkage groups for all eight homoeologous chromosome pairs of allotetraploid white clover were detected. Map length was estimated at 1,877 cM with 87% genome coverage. Map density was approximately 5 cM per locus. Segregation distortion was detected in six segments of the genome (homoeologous groups A1, A2, B1, B2, C1, and D1). A comparison of map locations of markers originating from white clover, red clover, and alfalfa (M. sativa L.) revealed putative macro-colinearity between the three Trifolieae species. This map can be used to link quantitative trait loci with SSR markers, and accelerate the improvement of white clover by marker-assisted selection and breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The combination of homologous, homoeologous and paralogous classes of sequence variation presents major challenges for SNP discovery in outbreeding allopolyploid species. Previous in vitro gene-associated SNP discovery studies in the allotetraploid forage legume white clover (Trifolium repens L.) were vulnerable to such effects, leading to prohibitive levels of attrition during SNP validation. Identification of T. occidentale and T. pallescens as the putative diploid progenitors of white clover has permitted discrimination of the different sequence variant categories. Amplicons from selected abiotic stress tolerance-related genes were obtained using mapping family parents and individuals from each diploid species. Following cloning, progenitor comparison allowed tentative assignment of individual haplotypes to one or other sub-genome, as well as to gene copies within sub-genomes. A high degree of coincidence and identity between SNPs and HSVs was observed. Close similarity was observed between the genome of T. occidentale and one white clover sub-genome, but the affinity between T. pallescens and the other sub-genome was weaker, suggesting that a currently uncharacterised taxon may be the true second progenitor. Selected validated SNPs were attributed to individual sub-genomes by assignment to and naming of homoeologous linkage groups, providing the basis for improved genetic trait-dissection studies. The approach described in this study is broadly applicable to a range of allopolyploid taxa of equivocal ancestry.  相似文献   

4.
Single-nucleotide polymorphisms (SNPs) and insertion–deletions (INDELs) are currently the important classes of genetic markers for major crop species. In this study, methods for developing SNP markers in rapeseed (Brassica napus L.) and their in silico mapping and use for genotyping are demonstrated. For the development of SNP and INDEL markers, 181 fragments from 121 different gene sequences spanning 86 kb were examined. A combination of different selection methods (genome-specific amplification, hetero-duplex analysis and sequence analysis) allowed the detection of 18 singular fragments that showed a total of 87 SNPs and 6 INDELs between 6 different rapeseed varieties. The average frequency of sequence polymorphism was estimated to be one SNP every 247 bp and one INDEL every 3,583 bp. Most SNPs and INDELs were found in non-coding regions. Polymorphism information content values for SNP markers ranged between 0.02 and 0.50 in a set of 86 varieties. Using comparative genetics data for B. napus and Arabidopsis thaliana, an allocation of SNP markers to linkage groups in rapeseed was achieved: a unique location was determined for seven gene sequences; two and three possible locations were found for six and four sequences, respectively. The results demonstrate the usefulness of existing genomic resources for SNP discovery in rapeseed.  相似文献   

5.
High‐density SNP genotyping arrays can be designed for any species given sufficient sequence information of high quality. Two high‐density SNP arrays relying on the Infinium iSelect technology (Illumina) were designed for use in the conifer white spruce (Picea glauca). One array contained 7338 segregating SNPs representative of 2814 genes of various molecular functional classes for main uses in genetic association and population genetics studies. The other one contained 9559 segregating SNPs representative of 9543 genes for main uses in population genetics, linkage mapping of the genome and genomic prediction. The SNPs assayed were discovered from various sources of gene resequencing data. SNPs predicted from high‐quality sequences derived from genomic DNA reached a genotyping success rate of 64.7%. Nonsingleton in silico SNPs (i.e. a sequence polymorphism present in at least two reads) predicted from expressed sequenced tags obtained with the Roche 454 technology and Illumina GAII analyser resulted in a similar genotyping success rate of 71.6% when the deepest alignment was used and the most favourable SNP probe per gene was selected. A variable proportion of these SNPs was shared by other nordic and subtropical spruce species from North America and Europe. The number of shared SNPs was inversely proportional to phylogenetic divergence and standing genetic variation in the recipient species, but positively related to allele frequency in P. glauca natural populations. These validated SNP resources should open up new avenues for population genetics and comparative genetic mapping at a genomic scale in spruce species.  相似文献   

6.
In this study, we developed 359 detection primers for single nucleotide polymorphisms (SNPs) previously discovered within intron sequences of wheat genes and used them to evaluate SNP polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.18 among 20 US elite wheat cultivars, representing seven market classes. This value increased to 0.23 when SNPs were pre-selected for polymorphisms among a diverse set of 13 hexaploid wheat accessions (excluding synthetic wheats) used in the wheat SNP discovery project (). PIC values for SNP markers in the D genome were approximately half of those for the A and B genomes. D genome SNPs also showed a larger PIC reduction relative to the other genomes (P < 0.05) when US cultivars were compared with the more diverse set of 13 wheat accessions. Within those accessions, D genome SNPs show a higher proportion of alleles with low minor allele frequencies (<0.125) than found in the other two genomes. These data suggest that the reduction of PIC values in the D genome was caused by differential loss of low frequency alleles during the population size bottleneck that accompanied the development of modern commercial cultivars. Additional SNP discovery efforts targeted to the D genome in elite wheat germplasm will likely be required to offset the lower diversity of this genome. With increasing SNP discovery projects and the development of high-throughput SNP assay technologies, it is anticipated that SNP markers will play an increasingly important role in wheat genetics and breeding applications. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background  

White clover (Trifolium repens L.) is an outbreeding allotetraploid species and an important forage legume in temperate grassland agriculture. Comparison of sub-genome architecture and study of nucleotide sequence diversity within allopolyploids provides insight into evolutionary divergence mechanisms, and is also necessary for the development of whole-genome sequencing strategies. This study aimed to evaluate the degree of divergence between the O and P' sub-genomes of white clover through sequencing of BAC clones containing paired homoeoloci. The microsyntenic relationships between the genomes of white clover and the model legumes Lotus japonicus and Medicago truncatula as well as Arabidopsis thaliana were also characterised.  相似文献   

8.
A novel, constitutively expressed gene, designated MtHP, was isolated from the model legume species Medicago truncatula. Sequence analysis indicates that MtHP most likely belongs to the PR10 multi-gene family. The MtHP promoter was fused to a -glucuronidase gene to characterize its expression in different plant species. Transient assay by microprojectile bombardment and hairy root transformation by Agrobacterium rhizogenes revealed GUS expression in leaf, stem, radicle and root in M. truncatula. Detailed analysis in transgenic Arabidopsis plants demonstrated that the promoter could direct transgene expression in different tissues and organs at various developmental stages; its expression pattern was similar to that of CaMV35S promoter, and the level of expression was higher than the reporter gene driven by CaMV35S promoter. Deletion analysis revealed that even a 107 bp fragment of the promoter could still lead to a moderate level of expression. The promoter was further characterized in white clover (Trifolium repens), a widely grown forage legume species. Strong constitutive expression was observed in transgenic white clover plants. Compared with CaMV35S promoter, the level of GUS activity in transgenic white clover was higher when the transgene was driven by MtHP promoter. Thus, the promoter provides a useful alternative to the CaMV35S promoter in plant transformation for high levels of constitutive expression.  相似文献   

9.
Physiological mechanisms of adaptation to copper-induced stress in two widespread legume plants, white sweet clover (Melilotus albus Merik.) and zigzag clover (Trifolium medium L.), growing in habitats differing in the man-made pollution. An antioxidant plant defense system was activated in response to 10 mM CuSO4, which is a stress factor. Specific biochemical features related to adaptation to soil contamination with copper were observed in tested plant species. Superoxide dismutase was activated in response to stress in both species from various habitats. M. albus from the impact zone manifested the better capacity of proline accumulation as compared with plants from less polluted habitats. T. medium plants from the impact zone contained more active peroxidase. It was suggested that plants growing for a long time under stressful conditions manifest the greater tolerance to copper ions than plants, which did not experience stress or were subjected to the milder stress.  相似文献   

10.
Extensive genomic resources are available in the model legume Medicago truncatula. Here, we present the discovery and design of the first array of single‐nucleotide polymorphism (SNP) markers in M. truncatula through large‐scale Sanger resequencing of genomic fragments spanning the genome, in a diverse panel of 16 M. truncatula accessions. Both anonymous fragments and fragments targeting candidate genes for flowering phenology and symbiosis were surveyed for nucleotide variation in almost 230 kb of unique genomic regions. A set of 384 SNP markers was designed for an Illumina's GoldenGate assay, genotyped on a collection of 192 inbred lines (CC192) representing the geographical range of the species and used to survey the diversity of two natural populations. Finally, 86% of the tested SNPs were of high quality and exhibited polymorphism in the CC192 collection. Even at the population level, we detected polymorphism for more than 50% of the selected SNPs. Analysis of the allele frequency spectrum in the CC192 showed a reduced ascertainment bias, mostly limited to very rare alleles (frequency <0.01). The substantial polymorphism detected at the species and population levels, the high marker quality and the potential to survey large samples of individuals make this set of SNP markers a valuable tool to improve our understanding of the effect of demographic and selective factors that shape the natural genetic diversity within the selfing species Medicago truncatula.  相似文献   

11.
Twenty‐seven polymorphic microsatellite markers were isolated from red clover (Trifolium pratense). Allelic variability and cross‐species amplification were assessed on 24 red clover and eight white clover (Trifolium repens) genotypes. The number of alleles detected in red clover ranged from two to 25. Observed and expected heterozygosities were high with average values of 0.71 and 0.88, respectively. Five of the 27 loci were also successfully amplified from white clover, where two to 13 alleles were detected. These highly polymorphic microsatellite loci provide powerful tools for population genetic studies as well as for marker‐assisted selection in this important forage legume species.  相似文献   

12.
Flexibility and low cost make genotyping‐by‐sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI‐MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference‐free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000–11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking.  相似文献   

13.
White clover (Trifolium repens L.) is a key component legume of temperate pasture agriculture and an important target for molecular marker-assisted plant breeding. A genetic map of white clover has been used to assess genetic control of agronomically important traits that vary in the F2(I.4R×I.5J) mapping family. Phenotypic analysis was performed for a range of vegetative morphogenesis traits (such as leaf area, internode length, plant height and plant spread) and reproductive morphogenesis and development traits (such as flowering date, floral intensity and seed yield), with both spatial and temporal replication. A multi-environment combined analysis (combined analysis) has been performed for traits assessed across multiple experimental datasets in order to identify consistent genetic effects. Quantitative trait locus (QTLs) were detected for the majority of traits, and the locations and magnitudes of QTL effects were compared between individual and combined analyses. This molecular genetic dissection of agronomic traits in white clover provides the basis for equivalent studies in more complex populations, design of marker-assisted selection strategies and comparative genetics with model legume species. Selection for QTLs derived from the combined analysis will permit robust improvement of phenotypic traits over different environments.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
A virus collection was used to identify a pathogen suitable for laboratory use with the model legume Lotus japonicus. Several Lotus species or L. japonicus accessions were tested and various degrees of susceptibility to the Arabis mosaic virus derived from barley (ArMV-ba) were found. Virus multiplication and persistence in Lotus tissue were examined, as well as plant responses to it. Sensitivity to the virus among the accessions and species is discussed in light of their geographical origin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Single nucleotide polymorphisms (SNPs) are becoming more commonly used as molecular markers in conservation studies. However, relatively few studies have employed SNPs for species with little or no existing sequence data, partly due to the practical challenge of locating appropriate SNP loci in these species. Here we describe an application of SNP discovery via shotgun cloning that requires no pre-existing sequence data and is readily applied to all taxa. Using this method, we isolated, cloned and screened for SNP variation at 90 anonymous sequence loci (51 kb total) from the banded wren (Thryothorus pleurostictus), a Central American species with minimal pre-existing sequence data and a documented paucity of microsatellite allelic variation. We identified 168 SNPs (a mean of one SNP/305 bp, with SNPs unevenly distributed across loci). Further characterization of variation at 41 of these SNP loci among 256 individuals including 37 parent–offspring families suggests that they provide substantial information for defining the genetic mating system of this species, and that SNPs may be generally useful for this purpose when other markers are problematic.  相似文献   

16.
The general approach to discovering single nucleotide polymorphisms (SNPs) requires locus-specific PCR amplification. To enhance the efficiency of SNP discovery in soybean, we used in silico analysis prior to re-sequencing as it is both rapid and inexpensive. In silico analysis was performed to detect putative SNPs in expressed sequence tag (EST) contigs assembled using publicly available ESTs from 18 different soybean genotypes. SNP validation by direct sequencing of six soybean cultivars and a wild soybean genotype was performed with PCR primers designed from EST contigs aligned with at least 5 out of 18 soybean genotypes. The efficiency of SNP discovery among the confirmation genotypes was 81.2%. Furthermore, the efficiency of SNP discovery between Pureunkong and Jinpumkong 2 genotypes was 47.4%, a great improvement on our previous finding based on direct sequencing (22.3%). Using SNPs between Pureunkong and Jinpumkong 2 in EST contigs, which were linked to target traits, we were able to genotype 90 recombinant inbred lines by high-resolution melting (HRM) analysis. These SNPs were mapped onto the expected locations near quantitative trait loci for water-logging tolerance and seed pectin concentration. Thus, our protocol for HRM analysis can be applied successfully not only to genetic diversity studies, but also to marker-assisted selection (MAS). Our study suggests that a combination of in silico analysis and HRM can reduce the cost and labor involved in developing SNP markers and genotyping SNPs. The markers developed in this study can also easily be applied to MAS if the markers are associated with the target traits.  相似文献   

17.
Use of SNPs has been favoured due to their abundance in plant and animal genomes, accompanied by the falling cost and rising throughput capacity for detection and genotyping. Here, we present in vitro (obtained from targeted sequencing) and in silico discovery of SNPs, and the design of medium‐throughput genotyping arrays for two oyster species, the Pacific oyster, Crassostrea gigas, and European flat oyster, Ostrea edulis. Two sets of 384 SNP markers were designed for two Illumina GoldenGate arrays and genotyped on more than 1000 samples for each species. In each case, oyster samples were obtained from wild and selected populations and from three‐generation families segregating for traits of interest in aquaculture. The rate of successfully genotyped polymorphic SNPs was about 60% for each species. Effects of SNP origin and quality on genotyping success (Illumina functionality Score) were analysed and compared with other model and nonmodel species. Furthermore, a simulation was made based on a subset of the C. gigas SNP array with a minor allele frequency of 0.3 and typical crosses used in shellfish hatcheries. This simulation indicated that at least 150 markers were needed to perform an accurate parental assignment. Such panels might provide valuable tools to improve our understanding of the connectivity between wild (and selected) populations and could contribute to future selective breeding programmes.  相似文献   

18.
Few studies have examined the association of SNPs in the adiponectin (ADIPOQ) and adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) genes with the euglycemic clamp, i.e. the gold standard measure of insulin sensitivity. The association of comprehensive tag SNPs in these genes with insulin sensitivity was examined in a cohort of adolescents and their parents. Probands and siblings (n = 441, mean age = 17.9 years) were recruited along with their parents (n = 262, mean age = 47.9 years). Typed SNPs included 21 SNPs in ADIPOQ, 7 SNPs in ADIPOR1, and 13 SNPs in ADIPOR2. Mixed model linear regression was used to test the association of SNPs with euglycemic-clamp derived insulin sensitivity. All analyses were stratified by race. After corrections to account for multiple testing and the linkage disequilibrium structure of the genes, one SNP in the ADIPOQ gene (rs822393) was significantly associated with insulin sensitivity in white subjects. In whites, six SNPs in ADIPOQ, one SNP in ADIPOR1 and one SNP in ADIPOR2 were associated with insulin sensitivity at the P < 0.05 level. In African Americans, two SNPs in ADIPOR1 were associated with insulin sensitivity at the P < 0.05 level. These results suggest that a variant in the ADIPOQ gene influences levels of insulin sensitivity and age may modify the effects of this variant. There are several other variants in ADIPOQ, ADIPOR1, and ADIPOR2 that may influence insulin sensitivity and these variants should be further investigated in other populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
A series of laboratory and field studies were done to evaluate a range of leguminous plant species for their feeding potential by adult weevils of the genusSitona Germar. (Coleoptera: Curculionidae). Three species ofSitona, S. lineatus L.,S. flavescens Marsh. andS. hispidulus F. all of which are found commonly on white clover (Trifolium repens L.) in the UK were offered a range of 11 legume species,T. repens (white clover, cv. Olwen),T. pratense L. (red clover, cv. Marcom),T. fragiferum L. (strawberry clover, cv. Palestine),T. hybridum L. (hybrid clover, cv. Tetra),T. incarnatum L (crimson clover),T. dubium Sibth. (lesser yellow trefoil),Lotus corniculatus L. (birdsfoot-trefoil, cv. Leo),L. uliginosus Schkuhr. (large birdsfoot-trefoil),Melilotus alba Desr. (white melilot),Medicago sativa L. (lucerne, cv. Europe) andM. lupulina L. (black medick) in two laboratory experiments. The weevils were offered a choice of these legumes in one experiment whilst in the other they did not have a choice of food material. These legumes were also sown in the field and a number of measurements of damage, together with counts ofSitona spp., were made. In the laboratoryS. lineatus andS. hispidulus favoured some of the legumes to a greater or lesser extent than white clover.S. flavescens was more restricted in its feeding than the other two weevil species. In the field studyS. lineatus invaded the experimental area quickly and tended to favourMedicago spp. andMelilotus spp. Later in the yearS. flavescens dominated the sitona fauna on the experiment, with the exception of aggregations ofS. lineatus onM. sativa andM. alba. In a separate screen of 5 varieties of white clover (cvs Donna, Menna, Kersey, Olwen and Grasslands Huia), cv. Olwen appeared to be the most susceptible to sitona attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号