首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens.  相似文献   

2.
K Isakovi?  G Lenert 《Blood cells》1987,12(2):355-364
The ability of leukemic B lymphocytes to proliferate after in vitro stimulation with PWM and PHA was studied in 15 patients with chronic lymphocytic leukemia. Peripheral blood lymphocytes of five healthy subjects as well as purified normal B lymphocytes were used as controls. Leukemic lymphocytes of all donors expressed the same membrane phenotype, M receptor, and B7 and Ia antigens. The lymphocyte populations investigated were not completely free from myelomonocytic cells and contained small numbers of T lymphocytes. DNA synthesis was determined on days 3, 5, and 7 of culture by measuring the incorporation of tritiated thymidine. PWM-induced proliferation of leukemic B lymphocytes of nine patients was within normal limits, while the response of leukemic cells of six patients was very low. On the other hand, all CLL donors responded very well to PHA. Moreover, the response of leukemic B lymphocytes was significantly higher than the response of normal B cells. It was concluded that leukemic B lymphocytes of CLL patients are capable of proliferation after stimulation with PWM and PHA. The mechanisms underlying these responses to PWM and PHA are likely to be different.  相似文献   

3.
Two temperature-sensitive mutants (ts1 and ts3) have been isolated from murine leukemic cells, L5178Y, after mutagenesis and cytosine arabinoside selection. Both ts1 and ts3 grew normally at the permissive temperature (33 °C) but not at the non-permissive temperature (39 °C). Consistent results were obtained with the growth patterns in suspension culture as well as the plating efficiencies in soft agar. Temperature shift experiments showed that the mutant cells remained viable after extended exposure to the non-permissive temperature. Labeling studies with radioactive precursors indicated that the synthesis of DNA, but not of RNA or protein, was affected in these mutants at 39 °C. The defective function of ts3 cells was substantially corrected by supplementing alanine, hypoxanthine, and pyruvate.  相似文献   

4.
The DNA:histone ratios have been determined by quantitative cytochemical analyses of individual cells in populations of human lymphocytic cells derived in continuous culture from the peripheral blood buffy coats of patients with acute leukemia or infectious mononucleosis. These populations of lymphocytic cells were quite similar with respect to the Feulgen-DNA and protein content per cell. The close association between DNA and histone was reflected in their similar patterns of distribution in fixed and stained cells; and further evidenced by similarities in the DNA: histone ratios characteristic of these different populations of lymphocytic cells. — Chemical acetylation and methylation of nuclear proteins of these cell populations exhibited some quantitative differences. The chemically acetylated histone content was less, and chemically methylated histone content was greater in cells derived from acute leukemia or infectious mononucleosis than in normal human lymphocytes. These quantitative differences in chemical acetylation and methylation may contribute to specific structural alterations in these histones which modify their functional capacity with respect to interactions with DNA. Such alterations may relate to differences in gene expression as reflected, for example, by the biological and biochemical differences among these human lymphocytic cells.These studies were supported in part by research grants C-6516 from the National Cancer Institute and FR-05526 from the Division of Research Facilities and Resources, National Institutes of Health.Holds Research Career Award K6-CA-22,150 from the National Cancer Institute, National Institutes of Health.  相似文献   

5.
In continuing search for exploitable biochemical differences between cancer and normal cells at the level of DNA replication, leukemic and "normal" hematopoietic cells from four different, established human cell lines were grown in culture flasks, and both the DNA and the DNA polymerase alpha were isolated in each case from the harvested (5-10 g wet weight) cell pellets. The four selected cell lines included a "normal" lymphoblastoid B-cell line (RPMI-1788), a pre-B cell (NALM-6) and a T-cell (MOLT-4) acute lymphoblastic leukemias, and a promyelocytic leukemia (HL-60). The DNA polymerase alpha enzyme of the two B-cell lines (both the leukemic and the "normal") showed the usual sensitivity toward inhibition by aphidicolin, while those from the two other leukemic cell lines were remarkably resistant to the antibiotic. Partially thiolated polycytidylic acid (MPC) strongly inhibited only the DNA polymerase alpha of the "normal" cell line, whereas the corresponding enzymes of all three leukemic cell lines were relatively insensitive to MPC. In contrast, the partially thiolated DNAs derived from the leukemic cell lines more strongly inhibited the DNA polymerase alphas of the leukemic cell lines than that of the "normal" cell line. These results indicate the existence of some structural differences between the DNA polymerase alpha enzymes (as well as between the DNAs) of human cells of different lineage and, particularly, of leukemic vs. "normal" character; such differences could be exploited in the design of selective antitemplates for chemotherapy.  相似文献   

6.
The response of leukemic cells from AKR/J mice to phytohemagglutinin (PHA) was compared with that of normal lymphocytes. PHA stimulated first cholesterol synthesis and then DNA synthesis in both lymphocytes and leukemic cells. The neoplastic cells were, however, much more sensitive to PHA, requiring less time and a lower concentration of the lectin for optimum stimulation as compared to lymphocytes. In fact, the amount of PHA which was required to activate lymphocytes to proliferate, as measured by increases in sterol and DNA synthesis, was inhibitory to leukemic cells. The basal level of cholesterol synthesis and the induction of cholesterol synthesis following PHA activation were depressed in lymphocytes and leukemic cells by treatment with 25-hydroxycholesterol and 7-ketocholesterol. These two oxygenated derivatives of cholesterol are known to be potent and specific inhibitors of sterol synthesis. Blockage of sterol synthesis by these reagents also abolished PHA-activated DNA synthesis in lymphocytes and leukemic cells. The results support the hypothesis that the synthesis of cholesterol is an important event leading to cell proliferation.  相似文献   

7.
We investigated the in vitro efficacy of all-trans retinoic acid (ATRA) and alpha-tocopherol succinate (α-TS) alone and in combination on the induction of cell death in freshly isolated leukemic cells obtained from chronic myeloid leukemia (CML) patients. In vitro cytotoxicity and induction of lipid peroxidation by ATRA (10 μM) and α-TS (25 or 50 μM) were evaluated in primary leukemic cells by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and malondialdehyde formation respectively. Treatment of leukemic cells with α-TS alone or in combination with ATRA significantly (P < 0.05) decreased the cell viability in a concentration and time dependent manner as compared to peripheral blood mononuclear cells obtained from normal healthy controls. Lipid peroxidation was enhanced by 98% (P < 0.05) on combined treatment of cells with ATRA (10 μM) and α-TS (50 μM). ATRA alone did not enhance the externalization of phosphatidyl serine as studied by annexin-V binding using fluorescence activated cell sorter analysis, whereas in combination with α-TS it increased to 400% at 12 h. The treatment of leukemic cells to combination of ATRA with α-TS significantly decreased (P < 0.05) mitochondrial membrane potential and enhanced lysosomal destabilization. The combination of these drugs also increased mitochondrial and cytosolic reactive oxygen species (ROS) production, nitric oxide levels, and caspase-3 activity significantly and caused DNA fragmentation at 24 h in a concentration dependent manner in the leukemic cells. Our data suggest that ATRA in combination with α-TS efficiently induces apoptosis in leukemic cells, which may be a useful therapeutic modality in CML patients.  相似文献   

8.
9.
These experiments have investigated cellular mechanisms involved in the generation of cellular immune responses to human acute leukemic blasts. Because normal human lymphocytes are not able to recognize immunologically, in vitro, lymphocytes from MHC identical siblings, the present studies have examined the in vitro proliferative and cytotoxic responses of normal lymphocytes to MHC identical AML and ALL blasts. In those cases where acute leukemic cells were unable to induce a proliferative response by MHC identical lymphocytes, the generation of effective anti-leukemic cytotoxicity required the addition of unrelated stimulating cells to the sensitization culture. In contrast, leukemic blasts that induced a proliferative response by MHC identical lymphocytes were also able to stimulate anti-leukemic cytotoxicity. This could be augmented by the addition of unrelated stimulating cells to the sensitization culture. The specificity of anti-leukemic cell cytotoxicity was demonstrated in all instances by simultaneous testing of putative killer cells on 51Cr leukemic blasts as well as 51Cr-labeled MHC identical phytohemagglutinin blasts or normal lymphocytes. Simultaneous sensitization to MHC identical leukemic blasts and unrelated stimulating lymphocytes did not invariably generate anti-leukemic cytotoxicity even when allogeneic cytotoxicity was observed; the absence of demonstrable suppressor activity in these nonreactive combinations suggested that some individuals may be specifically immunoincompetent, and thereby unable to generate effective anti-leukemic CML.  相似文献   

10.
It was observed before that DNAin situin chromatin of mitotic cells is more sensitive to denaturation than DNA in chromatin of interphase cells. DNA sensitivity to denaturation, in these studies, was analyzed by exposing cells to heat or acid and using acridine orange (AO), the metachromatic fluorochrome which can differentially stain double-stranded (ds) vs single-stranded (ss) nucleic acids, as a marker of the degree of DNA denaturation. However, without prior cell treatment with heat or acid no presence of single-stranded DNA in either mitotic or interphase cells was detected by this assay. In the present experiments we demonstrate that DNAin situin mitotic cells, without any prior treatment that can induce DNA denaturation, is sensitive to ss-specific S1 and mung bean nucleases. Incubation of permeabilized human T cell leukemic MOLT-4, promyelocytic HL-60, histiomonocytic lymphoma U937 cells, or normal PHA-stimulated lymphocytes with S1 or mung bean nucleases generated extensive DNA breakage in mitotic cells. DNA strand breaks were detected using fluorochrome-labeled triphosphonucleotides in the reaction catalyzed by exogenous terminal deoxynucleotidyl transferase. Under identical conditions of the cells’ exposure to ss-specific nucleases, DNA breakage in interphase cells was of an order of magnitude less extensive compared to mitotic cells. The data indicate that segments of DNA in mitotic chromosomes, in contrast to interphase cells, may be in a conformation which is sensitive to ss nucleases. This may be a reflection of the differences in the torsional stress of DNA loops between interphase and mitotic chromatin. Namely, greater stress in mitotic loops may lead to formation of the hairpin-loop structures by inverted repeats; such structures are sensitive to ss nucleases. The present method of detection of such segments appears to be more sensitive than the use of AO. The identification of mitotic cells based on sensitivity of their DNA to ss nucleases provides an additional method for their quantification by flow cytometry.  相似文献   

11.
Poly(adenosine diphosphoribose) (ADPR) synthase activities of nuclei isolated from normal human and leukemic leukocytes were assayed by incubation with radioactive NAD+. The synthase activity of leukemic leukocyte nuclei was significantly higher than that of normal leukocyte nuclei. The average length of polymers formed by isolated leukemic nuclei under the prescribed experimental condition ranged from 3.1 to 5.3 ADPR residues per chain, while those produced by normal leukocytes nuclei was 1.7 and 2.6 residues per chain. Isolated leukemic and normal leukocyte nuclei were incubated with and without NAD+ and the ability to carry out DNA synthesis was measured. The endogenous DNA synthesis of NAD-treated and untreated nuclei was the same. This finding parallels the result obtained with Novikoff hepatoma cell nuclei and differs from the observation with rat liver or testis nuclei.  相似文献   

12.
Protein synthesis in differentiating normal and leukemic erythroid cells   总被引:2,自引:0,他引:2  
Erythroleukemic cells transformed by the AEV or S13 strains of avian erythroblastosis virus differentiate in vitro either spontaneously (S13) or following a temperature induction (temperature-sensitive mutants of AEV). To study differentiation in these cells at the molecular level, homogeneous fractions of maturing cells at discrete stages of differentiation were prepared by Percoll density-gradient centrifugation. This method was also used for the fractionation of differentiating normal erythroid cells separated from total bone marrow by an immunological "panning" technique. Total protein synthesis in these cells was then analyzed by two-dimensional gel electrophoresis. The expression of several proteins was altered in differentiating leukemic cells but not in their normal counterparts. However, in general, the normal and leukemic cells from comparable stages of maturity showed closely related protein synthetic patterns. Similar early and late changes in the synthesis of a number of polypeptides were detected during maturation from early erythroid precursors to terminally differentiated erythrocytes. Further, the leukemic as well as the normal cells appeared to undergo a major switch in total protein synthetic pattern during late differentiation. These results demonstrate that normal and erythroleukemic cells differentiate along similar pathways.  相似文献   

13.
The synthesis of proinflammatory cytokines involves members of the mitogen-activated protein (MAP) kinase stress pathway, particularly p38 MAP kinase and c-jun NH2-terminal kinase. In this report we used hyperosmotic stress to study changes in steady-state mRNA levels and synthesis of proinflammatory cytokines in freshly obtained human peripheral blood mononuclear cells (PBMC)in vitro.There was no evidence of interleukin (IL)-8 gene expression in freshly obtained human blood despite 30 cycles of amplification of reverse-transcribed mRNA using the polymerase chain reaction. In contrast, exposure of PBMC to hyperosmotic conditions (330–410 mOsM) by the addition of NaCl to tissue culture medium induced gene expression for IL-1α, IL-1β, and IL-8. Routine tissue culture medium is hyperosmotic (305 mOsM) compared to human plasma (280–295 mOsM), but decreasing the osmolarity to the physiological range resulted in a 50% reduction in baseline IL-8 synthesis (P< 0.001). Although hyperosmotically induced accumulation of steady-state mRNA levels for IL-1α and IL-1β increased 50- and 7-fold over control, respectively, these were poorly translated into each respective cytokine. However, in PBMC stimulated by hyperosmotic stress, the addition of femtomolar concentrations of bacterial lipopolysaccharide, IL-1, or 1% normal human serum resulted in a synergistic synthesis (at least twice that expected) of IL-1α, IL-1β, TNF-α, and IL-8.  相似文献   

14.
An enriched population of early myeloid cells has been obtained from normal mouse bone marrow by injection of mice with sodium caseinate and the removal of cells with C3 (EAC) rosettes by Ficoll-Hypaque density centrifugation. This enriched population had no EAC or Fc (EA) rosettes and contained 87% early myeloid cells stained for myeloperoxidase and/or AS-D-chloroacetate esterase, 7% cells in later stages (ring forms) of myeloid differentiation and 6% unstained cells, 2% of which were small lymphocytes. After seeding in agar with the macrophage and granulocyte inducer MGI, the enriched population showed a cloning efficiency of 14% when removed from the animal and of 24% after one day in mass culture. Both the enriched and the unfractionated bone marrow cells gave the same proportion of macrophage and granulocyte colonies. The normal early myeloid cells were induced to differentiate by MGI in mass culture in liquid medium to mature granulocytes and macrophages. The sequence of granulocyte differentiation was the formation of EA and EAC rosettes followed by the synthesis and secretion of lysozyme and morphological differentiation to mature cells. D+ myeloid leukemic cells with no EA or EAC rosettes had a similar morphology to normal early myeloid cells and showed the same sequence of differentiation. The induction of EA and EAC rosettes occurred at the same time in both the normal and D+ leukemic cells, but lysozyme synthesis and the formation of mature granulocytes was induced later in the leukemic than in the normal cells. The results indicate that selection for non-rosette-forming normal early myeloid cells also selected for myeloid colony forming cells, that these normal early myeloid cells can form colonies with differentiation to macrophages and granulocytes, that normal and D+ myeloid leukemic cells have a similar sequence of differentiation and that the normal cells had a greater sensitivity for the formation of mature cells by MGI.  相似文献   

15.
The presence of nano- to micromolar concentrations of 12-0-tetradecanoyl-phorbol-13-acetate (TPA) in suspension cultures of human promyelocytic leukemia cells, HL-60, or human monocytic leukemia cells, THP-1, resulted in the appearance of macrophage-like cells attached to the substratum. The terminally TPA-differentiated cells continued to synthesize histones at a low rate even though DNA replication had ceased. The pattern of synthesis of histone variants in differentiated cells differed from that in undifferentiated cells and resembled that of quiescent or density-arrested cells. In undifferentiated cells, all three histone-H3 variants are synthesized, while in quiescent cells, only the H3.3 variant is synthesized. When TPA-differentiated macrophages were placed in normal medium, the pattern of histone synthesis was not altered, thus substantiating previous findings that the differentiation is irreversible. Further, TPA-differentiated macrophages and macrophages isolated from a normal human donor exhibited identical pattern of histone synthesis. Altogether, the results indicate that changes in the synthetic rates of histones during the TPA-induced maturation of human leukemic cells is not directly due to TPA or terminal cell differentiation per se but is due to the cessation of cell proliferation and DNA replication.  相似文献   

16.
17.
The regulation of gene expression in leukemic and normal myeloblasts induced to differentiate by the normal macrophage and granulocyte inducing protein MGI was studied by analysis of protein changes using two-dimensional polyacrylamide gel electrophoresis. During the 6-day period of differentiation from myeloblasts to mature cells, there was a programmed sequential change in the rate of synthesis of 217 of the 450 proteins detected in a MGI+D+ leukemic clone. The developmental program was initiated with a decrease in the synthesis of many proteins within the first hour, whereas the synthesis of new proteins occurred later, mostly between the second and fourth days. The mature cells showed a specialization associated with a changeover and increased synthesis of the major protein species. Both the MGI+D+ leukemic and the normal myeloblasts showed a similar sequence of protein changes during differentiation. The normal developmental program was thus maintained in the MGI+D+ leukemic cells. Cell mutants which differ in their competence to be induced to differentiate by MGI were used to dissect the developmental program of differentiation. Sixty-six protein changes were induced by MGI in partially differentiatable MGI+D? clones, whereas only 12 or 16 protein changes were induced in different MGI?D? clones which had not been induced for any previously known differentiation-associated property. In these mutant clone types, the induced protein changes were subsets of those induced by MGI in the MGI+D+ leukemic and normal myeloblasts. These subsets spanned the whole 6-day period of differentiation and had the same developmental sequence as in the fully differentiatable MGI+D+ cells. These data indicate that the protein changes during differentiation are not organized as one sequence, but rather as multiple, parallel sequences which can be separately induced. MGI induced some, but not all, of these sequences in the mutant clones. It is concluded that differentiation consists of multiple, parallel, separately programmed pathways of gene expression. Analysis of the initial differences between the proteins synthesized in untreated normal and leukemic myeloblasts has shown that all the leukemic clones, when compared to normal myeloblasts, constitutively expressed the MGI-induced state for a common subset of 14 proteins. In addition, the MGI+D? and MGI?D? clones, compared to MGI+D+, constitutively expressed the differentiated state for other subsets of proteins. The size of these constitutively expressed subsets was larger in MGI?D? than in MGI+D? clones. It is, therefore, suggested that the constitutive expression of some pathways of gene expression results in leukemia, whereas the constitutive expression of other pathways results in a decreased competence for the induction of differentiation.  相似文献   

18.
To study the nature of virus-cell interaction in persistently infected cells we have examined production of infectious virus, synthesis of viral DNA and DNA polymerase in a human leukemic cell line K562. It was found that only one of three K562 cell lines was permissive for limited growth of HSV-2 and infectious virus was released in a cyclical fashion. Intranuclear inclusions with electron-dense fibrils and particles resembling viral structures were observed in the virus-infected but not control K562 cells. Viral DNA synthesis could not be detected by centrifugation in CsCl density gradients; but was readily identified by Southern blot hydridization of virus-infected intracellular DNA with purified viral DNA. Viral DNa polymerase was synthesized by infected cells during active infectious virus production. In one of the two K562 cell lines that did not produce infectious virus, a few DNA fragments from infected cells were found to hybridize with purified viral DNA. These results suggest that variable lengths of HSV-2 genome can be harbored and propagated by different human leukemic K562 cells.  相似文献   

19.
G Symonds  L Sachs 《The EMBO journal》1982,1(11):1343-1346
Growth and differentiation of normal myeloid haematopoietic cells are regulated by a family of macrophage- and granulocyte-inducing (MGI) proteins. Some of these proteins (MGI-1) induce cell growth and others (MGI-2) induce cell differentiation. Addition of MGI-1 to normal myeloid cells induces growth and also induces the endogenous production of MGI-2. This induction of differentiation-inducing protein by growth-inducing protein then ensures the coupling between growth and differentiation found in normal cells. There are myeloid leukemic cells that constitutively produce their own MGI-1, but the cells do not differentiate in culture medium containing horse or calf serum. By removing serum from the medium, or in medium with mouse or rat serum, these leukemic cells are induced to differentiate to mature cells, which like normal mature cells, then no longer multiply. Leukemic cells with constitutive production of MGI-1 continuously cultured in serum-free medium with transferrin were also induced to differentiate by removing transferrin. This induction of differentiation was in all these cases associated with the endogenous production of MGI-2 by the cells. The results indicate that changes in specific constituents of the culture medium can result in autoinduction of differentiation in these leukemic cells due to restoration of the induction of MGI-2 by MGI-1, which then restores the normal coupling of growth and differentiation.  相似文献   

20.
Cells from autochthonous mouse mammary carcinomas which display estrogen-independent growth vivo were studied for their hormonal responses in primary culture. A culture system employing insulin-supplemented, serum-free medium and basement membrane Matrigel as a substratum was used to cultivate tumor cells. The cells did not exhibit in vitro estrogenor prolactin-dependent growth. Primary tumors still displayed a constitutional expression of α-, β-, and γ-casein mRNAs. These messages were dramatically reduced during the culture period. However, seven to eightfold increases in α- and β-casein mRNAs were inducible in the 5-day cultures by treatment with prolactin and hydrocortisone. If the hormones were present through a 2-week culture period, the levels of α-, β-, and γ-casein mRNAs in the cells were maintained and displayed in a time-dependent increase with a peak at 10–14 days. The accumulation of β-casein mRNA in vitro did not require DNA synthesis. Administration of prolactin directly into the growing tumors in vivo could also enhance β-casein mRNA levels in the tumor cells. Morphological studies of the cells cultured in the presence of prolactin and hydrocortisone did not reveal visible changes compared with those without hormonal treatment. Transplantation of tumor cells cultured in the presence or absence of hormones resulted in the development of tumors in mice at approximately the same time. The current studies suggest that the autochthonous mammary tumor cells, independent of estrogen for cell growth, were still inducible for casein gene expression in vitro and in vivo by appropriate hormones. The induction and maintenance of casein messages by a single hormonal treatment did not appear to correlate with morphology and DNA synthesis of cells in vitro or with tumor-producing capacities in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号