首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of plants by pathogens can influence their attractiveness and suitability to insect vectors and other herbivores. Here we examined the effects of Citrus sinensis (L.) Osbeck (Rutaceae) infection by the bacterium Xylella fastidiosa, which causes citrus variegated chlorosis (CVC), on the feeding preferences of two sharpshooter vectors, Dilobopterus costalimai Young and Oncometopia facialis (Signoret) (Homoptera: Cicadellidae). Experiments were performed inside observation chambers, in which a healthy plant and an infected one (with or without CVC symptoms) were supplied to a group of 40 sharpshooters. The number of insects that selected each treatment was recorded at several time intervals in 48 h. In another experiment, the ingestion rate on healthy and infected (symptomatic or not) plants was evaluated by measuring the liquid excretion of sharpshooters that were confined on branches of each plant for 72 h. Both sharpshooter species preferred healthy plants to those with CVC symptoms. However, O. facialis did not discriminate between healthy citrus and symptomless infected plants. Feeding by D. costalimai was markedly reduced when confined on CVC‐symptomatic plants, but not on asymptomatic infected ones. The ingestion rate by O. facialis was not affected by the presence of CVC symptoms. The results suggest that citrus trees with early (asymptomatic) infections by X. fastidiosa may be more effective as inoculum sources for CVC spread by insect vectors than those with advanced symptoms.  相似文献   

2.
Detailed information on probing behavior of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is critical for understanding the transmission process of phloem‐limited bacteria (Candidatus Liberibacter spp.) associated with citrus ‘huanglongbing’ by this vector. In this study, we investigated stylet penetration activities of D. citri on seedlings of Citrus sinensis (L.) Osbeck cv. Pêra (Rutaceae) by using the electrical penetration graph (EPG‐DC system) technique. EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into plant tissues. The main waveforms were correlated with histological observations of salivary sheath termini in plant tissues, to determine the putative location of stylet tips. The behavioral activities were also inferred based on waveform similarities in relation to other Sternorrhyncha, particularly aphids and whiteflies. In addition, we correlated the occurrence of specific waveforms with the acquisition of the phloem‐limited bacterium Ca. Liberibacter asiaticus by D. citri. The occurrence of a G‐like xylem sap ingestion waveform in starved and unstarved psyllids was also compared. By analyzing 8‐h EPGs of adult females, five waveforms were described: (C) salivary sheath secretion and other stylet pathway activities; (D) first contact with phloem (distinct from other waveforms reported for Sternorrhyncha); (E1) putative salivation in phloem sieve tubes; (E2) phloem sap ingestion; and (G) probably xylem sap ingestion. Diaphorina citri initiates a probe with stylet pathway through epidermis and parenchyma (C). Interestingly, no potential drops were observed during the stylet pathway phase, as are usually recorded in aphids and other Sternorrhyncha. Once in C, D. citri shows a higher propensity to return to non‐probing than to start a phloem or xylem phase. Several probes are usually observed before the phloem phase; waveform D is observed upon phloem contact, always immediately followed by E1. After E1, D. citri either returns to pathway activity (C) or starts phloem sap ingestion, which was the longest activity observed.  相似文献   

3.
Xylella fastidiosa is a xylem-limited bacterium that causes citrus variegated chlorosis (CVC), Pierce’s disease of grapevine, and leaf scald of coffee and plum and many other plant species. This pathogen is vectored by sharpshooter leafhoppers (Hemiptera: Cicadellidae: Cicadellinae) and resides in the insect foregut. Scanning electron microscopy was used to determine the retention sites of X. fastidiosa for the most common vector species in Brazilian citrus groves, Acrogonia citrina, Bucephalogonia xanthophis, Dilobopterus costalimai, and Oncometopia facialis. After a 48-h acquisition access period on infected citrus or plum, adult sharpshooters were kept on healthy citrus seedlings for an incubation period of 2 weeks to allow for bacterial multiplication. Then the vector heads were incubated for 24 h in a fixative and transferred into a cryoprotector liquid. Bacterial rod cells exhibiting similar X. fastidiosa morphology were found laterally attached to different regions inside the cibarial pump chamber (longitudinal groove, lateral surface, cibarial diaphragm and apodemal groove) of A. citrina, O. facialis, and D. costalimai, and polarly attached to the precibarium channel of O. facialis. Polymerase chain reactions of vector’s heads were positive for the presence of X. fastidiosa. No X. fastidiosa-like cells were detected in B. xanthophis. A different type of rod-shaped bacterium was found on B. xanthophis cibarium chamber and images suggest that the cibarium wall was degraded/digested by these bacteria. Colonization patterns of X. fastidiosa in their vectors are fundamental aspects to be explored toward understanding acquisition, adhesion, and transmission mechanisms for development of X. fastidiosa control strategies.  相似文献   

4.
Methylobacterium mesophilicum, originally isolated as an endophytic bacterium from citrus plants, was genetically transformed to express green fluorescent protein (GFP). The GFP-labeled strain of M. mesophilicum was inoculated into Catharanthus roseus (model plant) seedlings and further observed colonizing its xylem vessels. The transmission of this endophyte by Bucephalogonia xanthophis, one of the insect vectors that transmit Xylella fastidiosa subsp. pauca, was verified by insects feeding from fluids containing the GFP bacterium followed by transmission to plants and isolating the endophyte from C. roseus plants. Forty-five days after inoculation, the plants exhibited endophytic colonization by M. mesophilicum, confirming this bacterium as a nonpathogenic, xylem-associated endophyte. Our data demonstrate that M. mesophilicum not only occupy the same niche of X. fastidiosa subsp. pauca inside plants but also may be transmitted by B. xanthophis. The transmission, colonization, and genetic manipulation of M. mesophilicum is a prerequisite to examining the potential use of symbiotic control to interrupt the transmission of X. fastidiosa subsp. pauca, the bacterial pathogen causing Citrus variegated chlorosis by insect vectors.  相似文献   

5.

Background  

Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat.  相似文献   

6.
Xylem-feeding is apparently the only requirement making an insect a competent vector of the bacterium Xylella fastidiosa, an organism responsible for the devastation of the Southern Italian olive forest and nowadays considered one of the most feared threats to agriculture and landscape in Europe, including vineyards. Here, we used the direct current-electrical penetration graph (DC-EPG) technique to compare and describe the feeding behaviour on grapevine of four xylem-feeding species considered candidate vectors of X. fastidiosa widespread in Europe, namely two spittlebugs (the meadow spittlebug Philaenus spumarius and the spittlebug Neophilaenus campestris) and two sharpshooter leafhoppers (the rhododendron leafhopper Graphocephala fennahi and the green leafhopper Cicadella viridis). We created a standard for the analysis of EPG waveforms recorded with a DC-EPG device, describing feeding activities performed by these insects from stylet insertion into the plant to withdrawal. This standard, along with freely available software, has been developed to harmonize the calculation of feeding behavioural parameters in xylem-feeders. The most relevant differences between the two vector taxa were the probing frequency and the dynamics of xylem ingestion. Sharpshooters tended to perform significantly more probes than spittlebugs. In contrast, the latter spent longer times in low-frequency xylem ingestion, characterized by scattered contractions of the cibarial dilator muscle interspersed with periods of pump inactivity. Cicadella viridis was the species displaying the highest frequency of the electrical pattern found to be associated with X. fastidiosa inoculation in spittlebugs (Xe). Feeding behavioural data presented here represent an important step forward for deepening our knowledge of xylem-sap feeding insects' interaction with both the host plants and the bacterium they transmit.  相似文献   

7.
New Zealand is threatened by invasion of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), an important vector of Xylella fastidiosa, a gram-negative bacterium that causes Pierce's disease in grape (Vitis spp.) and scorch diseases in many other horticultural crops. Therefore, an understanding of the host acceptability, feeding behavior, and potential vector efficiency of glassy-winged sharpshooter on New Zealand crops is important. We tested host plant acceptance and feeding behaviors of glassy-winged sharpshooter on three common horticultural crops grown in New Zealand (apple [Malus spp.], grape, and citrus [Citrus spp.]), and a native plant (Metrosideros excelsa [=tomentosa] Richard, pohutukawa), using the electrical penetration graph (EPG) technique. Probing (stylet penetration) behaviors varied among the host plants, primarily due to differences in waveform event durations. Apple and grape were the most accepted host plants, on which glassy-winged sharpshooter spent the majority of its time on the plant probing and readily located and accepted a xylem cell for ingestion. This resulted in long durations of sustained xylem fluid ingestion. In contrast, pohutukawa was the least accepted host. On this plant, glassy-winged sharpshooter spent less time probing and engaged in longer and more frequent testing/searching and xylem-testing activities, rejected xylem cells frequently, and spent less time with stylets resting, before accepting a xylem cell and ultimately performing the same amount of sustained ingestion. Citrus plants contaminated with sublethal insecticide residues were intermediate between these extremes, with some acceptance of xylem, but less ingestion, probably due to presumed partial paralysis of the cibarial muscles. Implications of the results in terms of host plant acceptance and the development of a stylet penetration index are discussed.  相似文献   

8.
The citrus flatid planthopper, Metcalfa pruinosa Say (Hemiptera: Flatidae), is a very polyphagous native insect in North America and currently a serious pest in Europe and South Korea. To understand the feeding behaviour of M. pruinosa, stylet penetration behaviour of M. pruinosa was investigated with an electrical penetration graph (EPG) system. This study reports seven EPG waveforms related to M. pruinosa feeding behaviour: np (no stylet penetration), Mp1 (initiation of stylet penetration), Mp2 (stylet movement and salivation), Mp4 (phloem feeding), Mp4‐H (honeydew excretion), Mp5 (xylem feeding) and Mp6 (unknown). To determine respective feeding behaviour related to the Mp4 and Mp5 waveforms, stylets were cut with a laser beam, and the location of the stylet tip within plant tissue was examined. We found plant sap was exuded from the severed stylets only when the Mp4 waveform was observed, suggesting phloem sap ingestion. The stylet tip was located in the xylem region, indicating xylem‐feeding activity, when the Mp5 waveform was observed. The analysis of 24 different EPG parameters suggests that M. pruinosa stylets reached the vascular bundle of a plant within ca. 5 min and spend ca. 70% of the time feeding on xylem and phloem feeding. This is the first study that reports seven distinctive EPG waveforms with respect to the feeding behaviour of M. pruinosa which could help determine host specificity and host plant susceptibility.  相似文献   

9.
The glassy‐winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of various strains of Xylella fastidiosa, which cause disease in a variety of economically important plants. These diseases include citrus variegated chlorosis, oleander leaf scorch and Pierce's Disease of grapevines. Symbiotic control (SC) is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace the pathogenic strains of X. fastidiosa. Candidate endophytes for use in SC must occupy the xylem of host plants and attach to the pre‐cibarium and cibarium of sharpshooter insects in order to have access to the pathogen. The study of the bacterial community of GWSS heads by isolation and denaturing gradient gel electrophoresis (DGGE) revealed the presence of species that may be suitable for use in SC. In addition, the results indicated that two important factors, insect age and choice of host plant, affect the composition of the bacterial community in GWSS heads. The main bacterial genera isolated as colonizers of GWSS heads were identified, using partial 16S rRNA gene sequencing, as Bacillus, Pseudomonas, Pedobacter and Methylobacterium, as well as the species Curtobacterium flaccumfaciens. DGGE patterns revealed a diversity of endophytic species able to colonize the GWSS head. The main genera isolated in culture were also identified using this technique. Principal component analysis (PCA) from polymerase chain reaction (PCR)‐DGGE patterns indicated that the bacteria inhabiting the GWSS head are similar to those found as endophytes inside the host plants, and that insect developmental stage and preferential feeding on one host plant species over another are important factors in determining the composition of the bacterial community in the GWSS head. However, a shift in host plants for a small period of time did not cause changes in the compositions of these communities.  相似文献   

10.
In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell–cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.  相似文献   

11.
With the purpose of studying the feeding behavior of the brown citrus aphid pest, Toxoptera citricida (Kirkaldy) (Hemiptera: Aphididae), we compared stylet probing behaviors of third and fourth instars and adults on Citrus unshiu Marc (Rutaceae) seedlings using the electrical penetration graph (EPG) technique. EPG waveforms exhibited the full suite of stylet behaviors – stylet pathway, intracellular stylet puncture, phloem salivation (E1), sieve ingestion (E2), and xylem sap ingestion activities, plus the non‐penetration (Np) waveform. Before the phloem phase, the number of probes was significantly higher for third‐instar nymphs than for adults. Overall duration of Np events by adults was significantly lower than the duration of third and fourth instars. The number of short probes of the fourth instars was significantly higher than that of the adults. In the phloem phase, adults made more frequent and longer E1 events than the third and fourth instars. Third instars made more frequent but shorter E2 events, whereas adults made fewer but longer events. These results showed adults gained nutrients by increasing feeding time during phloem ingestion. Thus, the probability of phloem‐associated virus acquisition and transmission of T. citricida was higher in adults than in nymphs.  相似文献   

12.
Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce's disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips. Waveform B1 was ubitquious, interspersed throughout the other waveforms. B1 sub-type B1w was correlated with salivation followed by maxillary tip fluttering. This tip fluttering also occurred before and during B1 sub-type B1s, but was not directly correlated with either the occurrence or frequency of this waveform. Waveform B2 was correlated with sawing-like maxillary stylet movements, which usually occurred during salivary sheath branching. Waveform C was correlated with ingestion. Fluid outflow was also observed as a mechanism to clear the maxillary tips from debris during waveform C. This detailed understanding of stylet penetration behaviors of H. coagulata is an important step toward identifying the instant of bacterial inoculation which, in turn, will be applied to studies of disease epidemiology and development of host plant resistance.  相似文献   

13.
Feeding behavior of three leafhopper species – Erythroneura vitis (Harris), Erythroneura ziczac (Walsh), and Erythroneura elegantula (Say) (Hemiptera: Cicadellidae) – reared on grapevine, Vitis vinifera L. cv. ‘Seyval blanc’ (Vitaceae), was investigated using histological techniques and DC‐electrical penetration graphs (DC‐EPG). Histological studies revealed that the Erythroneura species induced white stipples on the leaves and that these leafhoppers produced thin salivary sheaths in grapevine leaf tissues. The DC‐EPG system allowed the characterization of five waveforms associated with stylet penetration and feeding in leaf tissues. These waveforms were characteristic of feeding phases corresponding to epidermis penetration pathway, salivation, and ingestion. We calculated 28 parameters (e.g., number of probes, duration of phases, and time spent in the various tissues) to describe and compare the feeding behavior of the Erythroneura species. We conclude that the three Erythroneura species are mainly mesophyll feeders but may probably also feed in other tissues such as xylem.  相似文献   

14.
By cloning and sequencing specific randomly amplified polymorphic DNA (RAPD) products, we have developed pairs of PCR primers that can be used to detect Xylella fastidiosa in general, and X. fastidiosa that cause citrus variegated chlorosis (CVC) specifically. We also identified a CVC-specific region of the X. fastidiosa genome that contains a 28-nucleotide insertion, and single base changes that distinguish CVC and grape X. fastidiosa strains. When using RAPD products to develop specific PCR primers, we found it most efficient to screen for size differences among RAPD products rather than presence/absence of a specific RAPD band.  相似文献   

15.
The psyllid Bactericera trigonica Hodkinson (Hemiptera: Triozidae) is a carrot and celery pest recently described as a vector of the plant pathogenic bacterium Candidatus Liberibacter solanacearum (Lso) on Apiaceae. Detailed information on vector stylet penetration activities is essential in the study of Lso transmission. In this study we used the electrical penetration graph (EPG) technique, characterized waveforms produced during the various stylet penetration activities in carrot leaves, and correlated them with stylet tracks and salivary sheath termini on plant tissues as well as with Lso inoculation. In addition, the effect of Lso in B. trigonica on the stylet penetration activities was tested. The EPG waveforms identified were: waveforms C1 and C2 detected in the mesophyll, waveforms D, E1, and E2 near or in the phloem sieve elements, and waveform G in the xylem vessels. A waveform pattern not previously reported for psyllids was the ‘pseudo‐potential drop’ (pseudo‐pd), characterized by sudden voltage dips similar to potential drops. However, the lowered voltage appeared to be inverted when the plant voltage is negative, indicating that it is caused by an increased resistance period and not due to a cell puncture. A direct correlation is shown between the waveform E1 and salivation into phloem sieve elements by B. trigonica as the inoculation of Lso occurred in a period as short as 30 s of E1; Lso transmission occurred in 17 of 35 plants (48%). Stylet activities during waveforms C or D had no consequences on the inoculation of Lso. In conclusion, Lso infection directly affects the probing behaviour of B. trigonica by increasing the total duration of C and D waveforms, but not variables related to phloem salivation (Lso inoculation) or ingestion (Lso acquisition). The reported information here is fundamental for identifying the psyllid vector traits of behaviour associated with transmission of Lso to Apiaceae.  相似文献   

16.
A genome-wide search was performed to identify simple sequence repeat (SSR) loci among the available sequence databases from four strains of Xylella fastidiosa (strains causing Pierce's disease, citrus variegated chlorosis, almond leaf scorch, and oleander leaf scorch). Thirty-four SSR loci were selected for SSR primer design and were validated in PCR experiments. These multilocus SSR primers, distributed across the X. fastidiosa genome, clearly differentiated and clustered X. fastidiosa strains collected from grape, almond, citrus, and oleander. They are well suited for differentiating strains and studying X. fastidiosa epidemiology and population genetics.  相似文献   

17.
Xylella fastidiosa causes diseases on a growing list of economically important plants. An understanding of how xylellae diseases originated and evolved is important for disease prevention and management. In this study, we evaluated the phylogenetic relationships of X. fastidiosa strains from citrus, grapevine, and mulberry through the analyses of random amplified polymorphic DNAs (RAPDs) and conserved 16S rDNA genes. RAPD analysis emphasized the vigorous genome-wide divergence of X. fastidiosa and detected three clonal groups of strains that cause Pierce's disease (PD) of grapevine, citrus variegated chlorosis (CVC), and mulberry leaf scorch (MLS). Analysis of 16S rDNA sequences also identified the PD and CVC groups, but with a less stable evolutionary tree. MLS strains were included in the PD group by the 16S rDNA analysis. The Asiatic origins of the major commercial grape and citrus cultivars suggest the recent evolution of both PD and CVC disease in North and South America, respectively, since X. fastidiosa is a New World organism. In order to prevent the development of new diseases caused by X. fastidiosa, it is important to understand the diversity of X. fastidiosa strains, how strains of X. fastidiosa select their hosts, and their ecological roles in the native vegetation. Received: 7 February 2002 / Accepted: 7 March 2002  相似文献   

18.
Suppression subtractive hybridization was used to rapidly identify 18 gene differences between a citrus variegated chlorosis (CVC) strain and a Pierce's disease of grape (PD) strain of Xylella fastidiosa. The results were validated as being highly representative of actual differences by comparison of the completely sequenced genome of a CVC strain with that of a PD strain.  相似文献   

19.
Xylella fastidiosa was the first plant pathogen whose complete genome sequence was available. X. fastidiosa causes citrus variegated chlorosis, but the physiological basis of the disease in unknown. Through comparative sequence analysis, several putative plant cell wall–degrading enzymes were identified on the X. fastidiosa genome. We have cloned Xf818, a putative endoglucanase ORF, into expression vectors pET20b and pET28b, and purified a recombinant form of Xf818 containing a His6 tag. Through biochemical assays, we have characterized the endoglucanase activity of this protein. The best conditions for hydrolysis over carboxymethyl cellulose (CMC) were on pH 5.2 at 65°C. Xf818 hydrolyzed CMC, acid swollen cellulose, Avicel, birch wood, oat spels xylans, and the oligosaccharides cellotetraose and cellopentaose. Xf818 carried out transglycosylation and had a functional cellulose-binding domain.  相似文献   

20.
Xylem ingestion by winged aphids   总被引:3,自引:0,他引:3  
When aphids and their host plant are incorporated in a DC electrical circuit, phloem and xylem ingestion register as separate waveforms of the electrical penetration graph (EPG) signal. Aphids are primarily phloem feeders; xylem ingestion is seldom reported but can be induced experimentally by fasting the insects in desiccating conditions. In experiments with the black bean aphid, Aphis fabae Scop., young winged (alate) and unwinged (apterous) virginoparous adults were collected from their natal host plants (broad bean, Vicia faba L.) and allowed 3-h continuous EPG-recorded access to V. faba seedlings. Several aphids (47% of both morphs) showed ingestion from phloem sieve elements. Alate aphids also showed frequent xylem ingestion (60% of individuals), but no apterous aphids exhibited this activity. The EPG technique involves attachment of a fine gold wire electrode to each insect, a process that may affect normal behaviour at the plant surface. However, when the technique was modified to monitor the stylet activities of freely-settled aphids, high levels of xylem ingestion by alates were also recorded. The results suggest that the developmental physiology of winged aphids somehow predisposes them to xylem ingestion, possibly as a result of dehydration during the teneral period. Alate aphids may reduce their weight by fasting before take-off, giving aerodynamic benefits, but making rehydration, via xylem uptake, a priority following plant contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号