首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The view on reactive oxygen species (ROS) in inflammation is currently shifting from being considered damaging toward having a more complex role in regulating inflammatory reactions. We recently demonstrated a role of ROS in regulation of animal models for the autoimmune disease rheumatoid arthritis. Low levels of ROS production, due to a mutation in the Ncf1 gene coding for the Ncf1 (alias p47(phox)) subunit of the NADPH oxidase complex, was shown to be associated with increased autoimmunity and arthritis severity in both rats and mice. To further investigate the role of ROS in autoimmunity, we studied transgenic mice expressing collagen type II (CII) with a mutation (D266E) in the immunodominant epitope that mimics the rat and human CII (i.e., mutated mouse collagen or MMC). This mutation results in a stronger binding of the epitope to the MHC class II molecule and leads to more pronounced tolerance and resistance to arthritis induced with rat CII. When the Ncf1 mutation was bred into these mice, tolerance was broken, resulting in enhanced T cell autoreactivity, high titers of anti-CII Abs, and development of severe arthritis. These findings highlight the importance of a sufficient ROS production in maintenance of tolerance to self-Ags, a central mechanism in autoimmune diseases such as rheumatoid arthritis. This is important as we, for the first time, can follow the effect of ROS on molecular mechanisms where T cells are responsible for either protection or promotion of arthritis depending on the level of oxygen species produced.  相似文献   

2.
3.
BACKGROUND: Rheumatoid arthritis (RA) is a prevalent and debilitating disease that affects the joints. Infiltration of blood-derived cells in the affected joints upon activation generate reactive oxygen/nitrogen species, resulting in an oxidative stress. One approach to counteract this oxidative stress is the use of antioxidants as therapeutic agents. OBJECTIVES: Kalpaamruthaa (KA), a modified indigenous Siddha preparation constituting Semecarpus anacardium nut milk extract (SA), Emblica officinalis (EO) and honey was evaluated for its synergistic antioxidant potential in adjuvant induced arthritic rats than sole SA treatment. MATERIALS AND METHODS: Levels/activities of reactive oxygen species (ROS)/reactive nitrogen species (RNS), myeloperoxidase, lipid peroxide and enzymic and non-enzymic antioxidants were determined in control, arthritis induced, SA and KA treated (150 mg/kg b.wt.) animals. RESULTS AND CONCLUSION: The levels/activities of ROS/RNS, myeloperoxidase and lipid peroxide were increased significantly (p<0.05) and the activities of enzymic and non-enzymic antioxidants were in turn decreased in arthritic rats, whereas these changes were reverted to near normal levels upon SA and KA treatment. KA showed an enhanced antioxidant potential than sole treatment of SA in adjuvant induced arthritic rats. KA via enhancing the antioxidant status in adjuvant induced arthritic rats than sole SA treatment proves to be an important therapeutic modality in the management of RA and thereby instituting the role of oxidative stress in the clinical manifestation of the disease RA. The profound antioxidant efficacy of KA than SA alone might be due to the synergistic action of the polyphenols such as flavonoids, tannins and other compounds such as vitamin C and hydroxycinnamates present in KA.  相似文献   

4.
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. As with other complex traits, genome-wide association studies (GWASs) have tremendously enhanced our understanding of the complex etiology of RA. In this review, we describe the genetic architecture of RA as determined through GWASs and meta-analyses. In addition, we discuss the pathologic mechanism of the disease by examining the combined findings of genetic and functional studies of individual RA-associated genes, including HLA-DRB1, PADI4, PTPN22, TNFAIP3, STAT4, and CCR6. Moreover, we briefly examine the potential use of genetic data in clinical practice in RA treatment, which represents a challenge in medical genetics in the post-GWAS era.  相似文献   

5.
Rheumatoid arthritis (RA) is a chronic debilitating disease of the joints. Both the innate and adaptive immune responses participate in the development and progression of RA. While several therapeutic reagents, such as TNF-α agonists, have been successfully developed for the clinical use in the treatment of RA, more than half of the patients do not respond to anti-TNF therapy. Therefore, new therapeutic reagents are needed. Recent studies have shown that sirtuin 1 (Sirt1), a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, is a critical negative regulator of both the innate and adaptive immune response in mice, and its altered functions are likely to be involved in autoimmune diseases. Small molecules that modulate Sirt1 functions are potential therapeutic reagents for autoimmune inflammatory diseases. This review highlights the role of Sirt1 in immune regulation and RA.  相似文献   

6.
7.
Endogenous nucleic acids and their receptors may be involved in the initiation of systemic autoimmune diseases including rheumatoid arthritis (RA). As the role of the DNA sensing Toll‐like receptor (TLR) 9 in RA is unclear, we aimed to investigate its involvement in the pathogenesis of autoimmune arthritis using three different experimental models of RA. The data obtained revealed involvement of TLR9 in the T cell‐dependent phase of inflammatory arthritis. In rats with pristane‐induced arthritis (PIA), TLR9 inhibition before disease onset reduced arthritis significantly and almost completely abolished bone erosion. Accordingly, serum levels of IL‐6, α‐1‐acid‐glycoprotein and rheumatoid factor were reduced. Moreover, in TLR9?/? mice, streptococcal cell wall (SCW)‐induced arthritis was reduced in the T cell‐dependent phase, whereas T cell‐independent serum‐transfer arthritis was not affected. Remarkably, while TLR7 expression did not change during in vitro osteoclastogenesis, TLR9 expression was higher in precursor cells than in mature osteoclasts and partial inhibition of osteoclastogenesis was achieved only by the TLR9 antagonist. These results demonstrate a pivotal role for TLR9 in the T cell‐dependent phases of inflammatory arthritis and additionally suggest some role during osteoclastogenesis. Hence, endogenous DNA seems to be crucially involved in the pathophysiology of inflammatory autoimmune arthritis.  相似文献   

8.
Suzuki A  Kochi Y  Okada Y  Yamamoto K 《FEBS letters》2011,585(23):3627-3632
Autoimmune diseases are caused by multiple genes and environmental effects. In addition, genetic contributions and the number of associated genes differ among different diseases and ethnic populations. Genome-wide association studies (GWAS) on rheumatoid arthritis (RA) and multiple sclerosis (MS) show that these diseases share many genetic factors. Recently, in addition to the major histocompatibility complex (MHC) gene, other genetic loci have been found to be associated with the risk for autoimmune diseases. This review focuses on the search for genetic variants that influence the susceptibility to RA and MS as typical autoimmune diseases and discusses the future of GWAS.  相似文献   

9.
Chae SC  Park YR  Song JH  Shim SC  Yoon KS  Chung HT 《Immunogenetics》2005,56(10):696-701
It has been determined that the family of T-cell immunoglobulin domain and mucin domain (TIM) proteins is expressed on T cells. A member of the TIM family, TIM-1, is considered to be a membrane protein associated with the development of Th2-biased immune responses and selectively expressed on Th2 cells. We previously showed that the exon 4 variations of Tim-1 are associated with susceptibility to allergic diseases, as well as autoimmune diseases such as rheumatoid arthritis (RA). In this study, we assessed the association between genotype and allele frequencies of the Tim-1 gene promoter region, in both RA patients and the controls without RA, using polymerase chain reaction-restriction fragment length polymorphism and single-base extension methods. We further investigated the relationships among the genotypes of each polymorphism and C-reactive protein or rheumatoid factor levels in RA patients. The genotype and allele frequencies of the –1637A>G polymorphism in RA patients are significantly different from those in the non-RA controls (P=0.0004 and P=0.001, respectively). Our results strongly suggest that polymorphism in the Tim-1 promoter region might be associated with susceptibility to RA.  相似文献   

10.
We recently identified a single-nucleotide polymorphism in the Ncf1 gene, a component of the NADPH oxidase complex, to be the cause of one of the strongest identified loci for arthritis severity in rats. This polymorphism was found to be naturally occurring in a collection of inbred rat strains as well as in wild rats. Among the inbred strains we found that different LEW substrains (LEW/Ztm and LEW/Mol), originating from different breeders, showed an allelic discrepancy in Ncf1, suggesting an impact on arthritis susceptibility between these substrains. In fact, the LEW/Mol strain was completely resistant to pristane-induced arthritis, in contrast to the LEW/Ztm strain, which was susceptible. Moreover, the LEW/Mol strain had higher production of radical oxygen species in peripheral blood leukocytes, a phenomenon most likely regulated by the polymorphisms in the Ncf1 gene. However, the phenotypic difference between LEW/Mol and LEW/Ztm is most likely a combination of several genes, of which Ncf1 is suggested to be the major regulating gene. This has also been confirmed by previous linkage analyses involving the LEW/Ztm strain which shows that a QTL on chromosome 12, most likely caused by polymorphism of Ncf1, is the major regulatory gene but that other loci are contributing. That more genes are likely to contribute was shown by a complete genome comparison of the LEW/Ztm and the LEW/Mol rat strains that uncovered an introduction of approximately 37% non-LEW genome into the LEW/Mol strain, which probably was caused by past crossbreeding. Therefore, the LEW/Mol should be regarded as a recombinant inbred strain.  相似文献   

11.
12.

Background  

A polymorphism in the activating component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, neutrophil cytosolic factor 1 (NCF1), has previously been identified as a regulator of arthritis severity in mice and rats. This discovery resulted in a search for NADPH oxidase-activating substances as a potential new approach to treat autoimmune disorders such as rheumatoid arthritis (RA). We have recently shown that compounds inducing NCF1-dependent oxidative burst, e.g. phytol, have a strong ameliorating effect on arthritis in rats. However, the underlying molecular mechanism is still not clearly understood. The aim of this study was to use gene-expression profiling to understand the protective effect against arthritis of activation of NADPH oxidase in the immune system.  相似文献   

13.
MOTIVATION: Most of diseases are caused by a set of gene defects, which occur in a complex association. The association scheme of expressed genes can be modelled by genetic networks. Genetic networks are efficiently facilities to understand the dynamic of pathogenic processes by modelling molecular reality of cell conditions. In this sense a genetic network consists of first, a set of genes of specified cells, tissues or species and second, causal relations between these genes determining the functional condition of the biological system, i. e. under disease. A relation between two genes will exist if they both are directly or indirectly associated with disease [8]. Our goal is to characterize diseases (especially autoimmune diseases like chronic pancreatitis CP, multiple sclerosis MS, rheumatoid arthritis RA) by genetic networks generated by a computer system. We want to introduce this practice as a bioinformatic approach for finding targets.  相似文献   

14.

Introduction

Recent studies revealed that co-morbidity and mortality due to cardiovascular disease are increased in patients with rheumatoid arthritis (RA) but little is known about factors involved in these manifestations. This study aimed at characterizing the impact of arthritis on oxidative stress status and tissue fibrosis in the heart of rats with adjuvant-induced arthritis (AIA).

Methods

AIA was induced with complete Freund's adjuvant in female Lewis rats. Animals were treated by oral administration of vehicle or angiotensin-converting enzyme inhibitor ramipril (10 mg/kg/day) for 28 days, beginning 1 day after arthritis induction. Isolated adult cardiomyocytes were exposed to 10 μM 4-hydroxynonenal (HNE) for 24 hours in the presence or absence of 10 μM ramipril.

Results

Compared to controls, AIA rats showed significant 55 and 30% increase of 4-HNE/protein adducts in serum and left ventricular (LV) tissues, respectively. Cardiac mitochondrial NADP+-isocitrate dehydrogenase (mNADP-ICDH) activity decreased by 25% in AIA rats without any changes in its protein and mRNA expression. The loss of mNADP-ICDH activity was correlated with enhanced accumulation of HNE/mNADP-ICDH adducts as well as with decrease of glutathione and NADPH. Angiotensin II type 1 receptor (AT1R) expression and tissue fibrosis were induced in LV tissues from AIA rats. In isolated cardiomyocytes, HNE significantly decreased mNADP-ICDH activity and enhanced type I collagen and connective tissue growth factor expression. The oral administration of ramipril significantly reduced HNE and AT1R levels and restored mNADP-ICDH activity and redox status in LV tissues of AIA rats. The protective effects of this drug were also evident from the decrease in arthritis scoring and inflammatory markers.

Conclusion

Collectively, our findings disclosed that AIA induced oxidative stress and fibrosis in the heart. The fact that ramipril attenuates inflammation, oxidative stress and tissue fibrosis may provide a novel strategy to prevent heart diseases in RA.  相似文献   

15.
Significant advances have been achieved in recent years to ameliorate rheumatoid arthritis (RA) in animal models using gene therapy approaches rather than biological treatments. Although biological agents serve as antirheumatic drugs with suppressing proinflammatory cytokine activities, they are usually accompanied by systemic immune suppression resulting from continuous or high systemic dose injections of biological agents. Therefore, gene transfer approaches have opened an interesting perspective to deliver one or multiple genes in a target-specific or inducible manner for the sustained intra-articular expression of therapeutic products. Accordingly, many studies have focused on gene transferring methods in animal models by using one of the available approaches. In this study, the important strategies used to select effective genes for RA gene therapy have been outlined. Given the work done in this field, the future looks bright for gene therapy as a new method in the clinical treatment of autoimmune diseases such as RA, and by ongoing efforts in this field, we hope to achieve feasible, safe, and effective treatment methods.  相似文献   

16.
IL-6 in autoimmune disease and chronic inflammatory proliferative disease   总被引:19,自引:0,他引:19  
Interleukin 6 (IL-6), which was originally identified as a B-cell differentiation factor, is now known to be a multifunctional cytokine that regulates the immune response, hematopoiesis, the acute phase response, and inflammation. Deregulation of IL-6 production is implicated in the pathology of several disease processes. The expression of constitutively high levels of IL-6 in transgenic mice results in fatal plasmacytosis, which has been implicated in human multiple myeloma. Increased IL-6 levels are also observed in several diseases, including rheumatoid arthritis (RA), systemic-onset juvenile chronic arthritis (JCA), osteoporosis, and psoriasis. IL-6 is critically involved in experimentally induced autoimmune disease, such as antigen-induced arthritis (AIA), and experimental allergic encephalomyelitis. All these clinical data and animal models suggest that IL-6 plays critical roles in the pathogenesis of autoimmune diseases. Here we review the evidence for the involvement of IL-6 in the pathophysiology of autoimmune diseases and chronic inflammatory proliferative diseases (CIPD) and discuss the possible molecular mechanisms of its involvement.  相似文献   

17.
18.
T cell activation and function are critically regulated by positive and negative costimulatory molecules. Aberrant expression and function of costimulatory molecules have been associated with persistent activation of self-reactive T cells in autoimmune diseases such as rheumatoid arthritis (RA). In this study, initial analysis of costimulatory molecules led to the unexpected observation that, in addition to CD80, several negative regulators (e.g., CTLA-4, programmed death-1 (PD-1), and PD ligand-1) were overexpressed in synovial T cells and macrophages derived from RA patients as opposed to controls. The expression of CD80 and PD ligand-1 on monocytes could be induced in vitro by IFN-gamma and TNF-alpha that were produced abundantly in RA-derived synovial fluid (SF). Furthermore, the soluble form of negative costimulatory molecules occurred at high concentrations in sera and SF of RA patients and correlated with titers of rheumatoid factor in RA patients. In particular, the levels of soluble PD-1 were found to correlate significantly with those of TNF-alpha in SF derived from RA patients. Detailed characterization of soluble PD-1 revealed that it corresponded to an alternative splice variant (PD-1Deltaex3) and could functionally block the regulatory effect of membrane-bound PD-1 on T cell activation. Our data indicate a novel pathogenic pathway in which overexpression of negative costimulatory molecules to restrict synovial inflammation in RA is overruled by the excessive production of soluble costimulatory molecules.  相似文献   

19.
Rheumatoid arthritis (RA) is a chronic destructive autoimmune disease characterised by periods of flare and remission. Today’s treatment is based on continuous immunosuppression irrespective of the patient’s inflammatory status. When the disease is in remission the therapy is withdrawn but withdrawal attempts often results in inflammatory flares, and re-start of the therapy is commenced when the inflammation again is prominent which leads both to suffering and increased risk of tissue destruction. An attractive alternative treatment would provide a disease-regulated therapy that offers increased anti-inflammatory effect during flares and is inactive during periods of remission. To explore this concept we expressed the immunoregulatory cytokine interleukin (IL)-10 gene under the control of an inflammation dependent promoter in a mouse model of RA - collagen type II (CII) induced arthritis (CIA). Haematopoetic stem cells (HSCs) were transduced with lentiviral particles encoding the IL-10 gene (LNT-IL-10), or a green fluorescence protein (GFP) as control gene (LNT-GFP), driven by the inflammation-dependent IL-1/IL-6 promoter. Twelve weeks after transplantation of transduced HSCs into DBA/1 mice, CIA was induced. We found that LNT-IL-10 mice developed a reduced severity of arthritis compared to controls. The LNT-IL-10 mice exhibited both increased mRNA expression levels of IL-10 as well as increased amount of IL-10 produced by B cells and non-B APCs locally in the lymph nodes compared to controls. These findings were accompanied by increased mRNA expression of the IL-10 induced suppressor of cytokine signalling 1 (SOCS1) in lymph nodes and a decrease in the serum protein levels of IL-6. We also found a decrease in both frequency and number of B cells and serum levels of anti-CII antibodies. Thus, inflammation-dependent IL-10 therapy suppresses experimental autoimmune arthritis and is a promising candidate in the development of novel treatments for RA.  相似文献   

20.
Somatic mutations have a role in the pathogenesis of a number of diseases, particularly cancers. Here we present data supporting a role of mitochondrial somatic mutations in an autoimmune disease, rheumatoid arthritis (RA). RA is a complex, multifactorial disease with a number of predisposition traits, including major histocompatibility complex (MHC) type and early bacterial infection in the joint. Somatic mutations in mitochondrial peptides displayed by MHCs may be recognized as non-self, furthering the destructive immune infiltration of the RA joint. Because many bacterial proteins have mitochondrial homologues, the immune system may be primed against these altered peptides if they mimic bacterial homologues. In addition, somatic mutations may be influencing cellular function, aiding in the acquirement of transformed properties of RA synoviocytes. To test the hypothesis that mutations in mitochondrial DNA (mtDNA) are associated with RA, we focused on the MT-ND1 gene for mitochondrially encoded NADH dehydrogenase 1 (subunit one of complex I – NADH dehydrogenase) of synoviocyte mitochondria from RA patients, using tissue from osteoarthritis (OA) patients for controls. We identified the mutational burden and amino acid changes in potential epitope regions in the two patient groups. RA synoviocyte mtDNA had about twice the number of mutations as the OA group. Furthermore, some of these changes had resulted in potential non-self MHC peptide epitopes. These results provide evidence for a new role for somatic mutations in mtDNA in RA and predict a role in other diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号