首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of rearrangement and insertion of sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) were investigated. The alterations were made by recombinant DNA manipulations on a plasmid subclone containing an M-MuLV LTR. Promoter activity of altered LTRs was measured by fusion to the bacterial chloramphenicol acetyltransferase gene, followed by transient expression assay in NIH 3T3 cells. M-MuLV proviral organizations containing the altered LTRs were also generated, and infectious virus was recovered by transfection. Infectivity of the resulting virus was quantified by XC plaque assay, and pathogenicity was determined by inoculating neonatal NIH Swiss mice. Inversion of sequences in the U3 region containing the tandemly repeated enhancer sequences (-150 to -353 base pairs [bp]) reduced promoter activity approximately fivefold in the transient-expression assays. Infectious virus containing the inverted sequences (Mo- M-MuLV) showed a 20-fold reduction in relative infectivity compared with wild-type M-MuLV, but the virus still induced thymus-derived lymphoblastic lymphoma or leukemia in mice, with essentially the same kinetics as for wild-type M-MuLV. We previously derived an M-MuLV which carried inserted enhancer sequences from the F101 strain of polyomavirus (Mo + PyF101 M-MuLV) and showed that this virus is nonleukemogenic. In Mo + PyF101 M-MuLV, the PyF101 sequences were inserted between the M-MuLV promoter and the M-MuLV enhancers (at -150 bp). A new LTR was generated in which the PyF101 sequences were inserted to the 5' side of the M-MuLV enhancers (at -353 bp, PyF101 + Mo M-MuLV). The PyF101 + Mo LTR exhibited promoter activity similar (40 to 50%) to that of wild-type M-MuLV, and infectious PyF101 + Mo M-MuLV had high infectivity on NIH 3T3 cells (50% of wild type). In contrast to the nonleukemogenic Mo + PyF101 M-MuLV, PyF101 + Mo M-MuLV induced leukemia with kinetics similar to that of wild-type M-MuLV. Thus, the position of the PyF101 sequences relative to the M-MuLV LTR affected the biological behavior of the molecular construct. Furthermore, PyF101 + Mo M-MuLV induced a different spectrum of neoplastic disease. In comparison with wild-type M-MuLV, which induces a characteristic thymus-derived lymphoblastic lymphoma with extremely high frequency, PyF101 + Mo M-MuLV was capable of inducing both acute myeloid leukemia or thymus-derived lymphoblastic lymphoma, or both. Tumor DNA from both the PyF101 + Mo- and Mo- M-MuLV-inoculated animals contained recombinant proviruses with LTRs that differed from the initially inoculated virus.  相似文献   

2.
3.
4.
5.
Deletional analysis within the long terminal repeat (LTR) of Moloney murine leukemia virus (M-MuLV) was performed. By molecular cloning, deletions were made in the vicinity of the XbaI site at -150 base pairs (bp) in the U3 region, between the tandemly repeated enhancers and the TATA box. The effects of the deletions on LTR function were measured in two ways. First, deleted LTRs were fused to the bacterial chloramphenicol acetyltransferase gene and used in transient expression assays. Second, infectious M-MuLVs were generated by transfection of M-MuLV proviruses containing the deleted LTRs, and the relative infectivity of the mutant viruses was assessed by XC-syncytial assay. Most of the deleted LTRs examined showed relatively high promoter activity in the transient chloramphenicol acetyltransferase assays, with values ranging from 20 to 50% of the wild-type M-MuLV LTR. Thus, the sequences between the enhancers and the TATA box were not absolutely required for transient expression. However, infectivity of viruses carrying the same deleted LTRs showed more pronounced effects. Deletion of sequences from -195 to -174 bp reduced infectivity 20- to 100-fold. Deletion of sequences within the region from -174 to -122 bp did not affect infectivity, indicating that this region is dispensable. On the other hand, deletion of sequences from -150 to -40 bp reduced infectivity from 5 to 6 logs, although the magnitude of the reduction partly may have reflected threshold envelope protein requirements for positive XC assays. The reduced infectivity did not appear to result from a failure of proviral DNA synthesis or integration by the mutant. Thus, the infectivity measurements identified three functional domains in the region between the enhancers and the TATA box.  相似文献   

6.
7.
8.
9.
10.
Three series of recombinant DNA clones were constructed, with the bacterial chloramphenicol acetyltransferase (CAT) gene as a quantitative indicator, to examine the activities of promoter and enhancer sequence elements in the 5' long terminal repeat (LTR) of murine leukemia virus (MuLV)-related proviral sequences isolated from the mouse genome. Transient CAT expression was determined in mouse NIH 3T3, human HT1080, and mink CCL64 cultured cells transfected with the LTR-CAT constructs. The 700-base-pair (bp) LTRs of three polytropic MuLV-related proviral clones and the 750-bp LTRs of four modified polytropic proviral clones, in complete structures either with or without the adjacent downstream sequences, all showed very little or negligible activities for CAT expression, while ecotropic MuLV LTRs were highly active. The MuLV-related LTRs were divided into three portions and examined separately. The 3' portion of the MuLV-related LTRs that contains the CCAAC and TATAA boxes was found to be a functional promoter, being about one-half to one-third as active as the corresponding portion of ecotropic MuLV LTRs. A MboI-Bg/II fragment, representing the distinct 190- to 200-bp inserted segment in the middle, was found to be a potential enhancer, especially when examined in combination with the simian virus 40 promoter in CCL64 cells. A PstI-MboI fragment of the 5' portion, which contains the protein-binding motifs of the enhancer segment as well as the upstream LTR sequences, showed moderate enhancer activities in CCL6 cells but was virtually inactive in NIH 3T3 cells and HT1080 cells; addition of this fragment to the ecotropic LTR-CAT constructs depressed CAT expression. Further analyses using chimeric LTR constructs located the presence of a strong negative regulatory element within the region containing the 5' portion of the enhancer and the immediate upstream sequences in the MuLV-related LTRs.  相似文献   

11.
12.
B K Brightman  C Farmer    H Fan 《Journal of virology》1993,67(12):7140-7148
Mo+PyF101 M-MuLV is a variant Moloney murine leukemia virus containing polyomavirus F101 enhancers inserted just downstream from the M-MuLV enhancers in the long terminal repeat (LTR). The protein coding sequences for this virus are identical to those of M-MuLV. Mo+PyF101 M-MuLV induces T-cell disease with a much lower incidence and longer latency than wild-type M-MuLV. We have previously shown that Mo+PyF101 M-MuLV is defective in preleukemic events induced by wild-type M-MuLV, including splenic hematopoietic hyperplasia, bone marrow depletion, and generation of recombinant mink cell focus-inducing viruses (MCFs). We also showed that an M-MCF virus driven by the Mo+PyF101 LTR is infectious in vitro but does not propagate in mice. However, in these experiments, when a pseudotypic mixture of Mo+PyF101 M-MuLV and Mo+PyF101 MCF was inoculated into newborn NIH Swiss mice, they died of T-cell leukemia at times almost equivalent to those induced by wild-type M-MuLV. Tumor DNAs from Mo+PyF101 M-MuLV-Mo+PyF101 MCF-inoculated mice were examined by Southern blot analysis. The predominant forms of Mo+PyF101 MCF proviruses in these tumors contained added sequences in the U3 region of the LTR. The U3 regions of representative tumor-derived variant Mo+PyF101 MCFs were cloned by polymerase chain reaction amplification, and sequencing indicated that they had acquired an additional copy of the M-MuLV 75-bp tandem repeat in the enhancer region. NIH 3T3 cell lines infected with altered viruses were obtained from representative Mo+PyF101 M-MuLV-Mo+PyF101 MCF-induced tumors, and mice were inoculated with the recovered viruses. Leukemogenicity was approximately equivalent to that in the original Mo+PyF101 M-MuLV-Mo+PyF101 MCF viral stock. Southern blot analysis on the resulting tumors now predominantly revealed loss of the polyomavirus sequences. These results suggest that the suppressive effects of the PyF101 sequences on M-MuLV-induced disease and potentially on MCF propagation were overcome in two ways: by triplication of the M-MuLV direct repeats and by loss of the polyomavirus sequences.  相似文献   

13.
14.
15.
16.
B K Brightman  B R Davis    H Fan 《Journal of virology》1990,64(9):4582-4584
We previously showed that neonatal mice inoculated with Moloney murine leukemia virus (M-MuLV) exhibit a preleukemic state characterized by splenomegaly and increased numbers of hematopoietic progenitors. An M-MuLV variant with greatly reduced leukemogenic potential, Mo+PyF101 M-MuLV, does not generally induce this preleukemic state. In order to investigate the mechanism involved in M-MuLV induction of preleukemic hyperplasia, we tested the CFU-mixed myeloid and erythroid (CFUmix) from M-MuLV- and Mo+PyF101 M-MuLV-inoculated mice for the presence of virus by antibody staining and for the release of infectious virus. The majority of CFUmix colonies from both M-MuLV- and Mo+PyF101 M-MuLV-inoculated mice contained infectious virus even though M-MuLV-inoculated mice showed elevated levels of CFUmix while the Mo+PyF101 M-MuLV-inoculated mice did not. This indicates that direct infection of hematopoietic progenitors was not sufficient to induce hyperplasia. Rather, hematopoietic hyperplasia may result indirectly from infection of some other cell type.  相似文献   

17.
18.
19.
20.
The viral DNA genome of the leukemogenic Gross passage A virus was cloned in phage Charon 21A as an infectious molecule. The virus recovered by transfection with this infectious DNA was ecotropic, N-tropic, fibrotropic, and XC+. It was leukemogenic when reinjected into newborn SIM mice, indicating that ecotropic murine leukemia virus (MuLV) from an AKR mouse thymoma can harbor leukemogenic sequences. Its restriction map was similar to that of nonleukemogenic AKR MuLV, its putative parent, but differed at the 3' end and in the long terminal repeat (LTR). The nucleotide sequence of the Gross A virus LTR was identical to the AKR MuLV LTR sequence (Van Beveren et al., J. Virol. 41:542-556, 1982) in U5, R, and part of U3. All differences between both LTRs were found in U3. Only one copy of the U3 tandem direct repeat was conserved in the Gross A virus LTR, and it was rearranged by the insertion of a 36-base-pair sequence and by five point mutations. Only one additional point mutation common to several oncogenic MuLVs was present in U3. These structural changes in the U3 LTR and at the 3' end of the genome may be related to the leukemogenicity of this virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号