首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invariant features of the primary structure of 67 globins are analysed. These features may be responsible for the formation of the secondary structure of these proteins at the first stage of self-organization (in the unfolded chain). It is shown that in primary structures of globins there are 11 sites or regions of one to four residues in which at least one of the residues Asn, Asp, His, Pro, Ser or Thr is located in every globin (haem-linking His residues are excluded from these sites). An unambiguous correlation exists between the position of these regions and the secondary structure of globins: all these regions (except one) are located near the ends of helices in globins whose three-dimensional structure is known and the ends of all helices (except for the helix F) are coded by such regions. A decrease in the set of residues listed above leads to a sharp drop in the number of regions invariantly occupied by the residues, while an addition of residues such as Tyr and Gly to this set does not eventually increase the number of invariant regions. Five residues (Asn, Asp, His, Ser and Thr) of the six that code the ends of helical regions have polar side groups with a small number of degrees of freedom capable of forming hydrogen bonds with atoms of the backbone with a relatively small loss of entropy. One residue (Pro) has no NH-group and, therefore, has less chance of participating in the formation of hydrogen bonds between atoms of the backbone. This corroborates the hypothesis that competition between hydrogen bonds of short polar side groups and hydrogen bonds in the backbone is essential for the formation of the secondary structure in unfolded protein chains. Amino acid replacements in hydrophobic cores of the 67 globins are considered in the Appendix.  相似文献   

2.
The dehydropeptide Ac-delta Phe-L-Val-delta Phe-NH-Me, containing two dehydrophenylalanine (delta Phe) residues, crystallizes from methanol/water in space group P212121, with a = 12.622 (1), b = 12.979 (1), and c = 15.733 (1) A. In the solid state, the molecular structure is characterized by the presence of two intramolecular hydrogen bonds which form two consecutive beta-bends. The (phi, psi) torsion angles of the three residues are very similar and close to the standard values of type III beta-bends, so the molecular conformation corresponds to an incipient right-handed 3(10)-helix, only slightly distorted. In the crystal, the molecules are linked by head-to-tail hydrogen bonds, thus forming continuous helical columns packed in antiparallel mode. There are no lateral hydrogen bonds; the only interactions are hydrophobic contacts between the apolar side chains of neighboring helical columns.  相似文献   

3.
A new method for determination of the secondary protein structure from the CD spectra taking into account the contribution of aromatic amino acid residues is proposed. New proteins reference CD spectra for five secondary structures (alpha-helices, antiparallel and parallel beta-structures, beta-bends and irregular form) without contribution of aromatic residues are obtained. By means of this new method the secondary structure of sixteen different proteins was analysed. There is a good correlation of these results with the X-ray data.  相似文献   

4.
A model for prediction of alpha-helical regions in amino acid sequences has been tested on the mainly-alpha protein structure class. The modeling represents the construction of a continuous hypothetical alpha-helical conformation for the whole protein chain, and was performed using molecular mechanics tools. The positive prediction of alpha-helical and non-alpha-helical pentapeptide fragments of the proteins is 79%. The model considers only local interactions in the polypeptide chain without the influence of the tertiary structure. It was shown that the local interaction defines the alpha-helical conformation for 85% of the native alpha-helical regions. The relative energy contributions to the energy of the model were analyzed with the finding that the van der Waals component determines the formation of alpha-helices. Hydrogen bonds remain at constant energy independently whether alpha-helix or non-alpha-helix occurs in the native protein, and do not determine the location of helical regions. In contrast to existing methods, this approach additionally permits the prediction of conformations of side chains. The model suggests the correct values for ~60% of all chi-angles of alpha-helical residues.  相似文献   

5.
A model is proposed for the structure of stereospecific sites in regulatory proteins. On its basis a possible code is suggested that governs the binding of regulatory proteins at specific control sites on DNA. Stereospecific sites of regulatory proteins are assumed to contain pairs of antiparallel polypeptide chain segments which form a right-hand twisted antiparallel beta-sheet, with single-stranded regions at the ends of the beta-structure. The model predicts that binding reaction between a regulatory protein and double-helical DNA is a cooperative phenomenon and is accompanied by significant structural alteration at the stereospecific site of the protein. Half of hydrogen bonds normally existing in beta-structure are broken upon complex formation with DNA and a new set of hydrogen bonds is formed between polypeptide amide groups and DNA base pairs. In a stereospecific site, one chain (t-chain) is attached through hydrogen bonds to the carbonyl oxygens of pyramides and N3 adenines lying in one DNA strand, while the second polypeptide chain (g chain) is hydrogen bonded to the 2-amino groups of guanine residues lying in the opposite DNA strand. The amide groups serve as specific reaction sites being hydrogen bond acceptors in g-chain and hydrogen bond donors in t-chain. The single-stranded portions of t- and g-chains lying in neighbouring subunits of regulatory protein interact with each other forming deformed beta-sheets. The recognition of regulatory sequences by proteins is based on the structural complementarity between stereospecific sites of regulatory proteins and base pairs sequences at the control sites. An essential feature of these sequences is the asymmetrical distribution of guanine residues between the two DNA strands. The code predicts that there are six fundamental amino acid residues (serine, threonine, asparagine, histidine, glutamine and cysteine) whose sequence in stereospecific site determines the base pair sequence to which a given regulatory protein would bind preferentially. The code states a correspondence between four amino acid residues at the stereospecific site of regulatory protein with the two residues being in t- and g-segments, respectively, and AT(GC) base pair at the control site. It is thus possible to determine which amino acid residues in the repressor and which base pairs in the operator DNA are involved in specific interactions with each other, as exemplified by lac repressor binding to lac operator.  相似文献   

6.
β‐Sheet twisting is thought to be mainly determined by interstrand hydrogen bonds with little contribution from side chains, but some proteins have large, flat β‐sheets, suggesting that side chains influence β‐structures. We therefore investigated the relationship between amino acid composition and twists or bends of β‐strands. We calculated and statistically analyzed the twist and bend angles of short frames of β‐strands in known protein structures. The most frequent twist angles were strongly negatively correlated with the proportion of hydrophilic amino acid residues. The majority of hydrophilic residues (except serine and threonine) were found in the edge regions of β‐strands, suggesting that the side chains of these residues likely do not affect β‐strand structure. In contrast, the majority of serine, threonine, and asparagine side‐chains in β‐strands made contacts with a nitrogen atom of the main chain, suggesting that these residues suppress β‐strand twisting. Proteins 2014; 82:1484–1493. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.  相似文献   

8.
Abstract

To elucidate the mechanism of protein thermostabilization, the thermodynamic properties of small monomeric proteins from mesophilic and thermophilic organisms have been analyzed. Molecular dynamics simulations were employed in the study of dynamic features of charged and polar side chains of amino acid residues. The basic conclusion has been made: surface charged and polar side chains with high conformational mobility can form alternative hydrogen bonded (H-bonded) donor-acceptor pairs. The correlation between the quantitative content of alternative H-bonds per residue and the temperature of maximal thermostability of proteins has been found. The proposed mechanism of protein thermostabilization suggests continuous disruption of the primary H- bonds and formation of alternative ones, which maintain constant the enthalpy value in the native state and prevent a rapid increase of the conformational entropy with the rising temperature. The analysis of the results show that the more residues located in the N- and C-terminal regions and in the extended loops that are capable of forming alternative longer-range H-bonded pairs, the higher the protein thermostability.  相似文献   

9.
Standard conformations of a polypeptide chain in irregular protein regions   总被引:1,自引:0,他引:1  
A detailed stereochemical analysis of known protein structures has been made which shows that: (1) irregular regions of proteins consist of a limited number of standard structures formed by three, four of more residues; (2) an amino acid residue of a protein can adopt one of the six sterically allowed conformations designated here as alpha, alpha L, beta, gamma, delta, and epsilon. It is shown that there are two allowed conformations of a polypeptide chain at the N-end of an alpha-helix, beta alpha n- and beta gamma alpha n-conformations, where n is a number of residues in the alpha-helix. At the C-end of the alpha-helix there are two conformations as well, alpha n gamma beta- and alpha n gamma alpha L beta-ones. Two beta-strands in a beta-hairpin can be joined, for example, by standard structures with beta beta alpha L beta-, beta alpha gamma alpha L beta-, beta alpha alpha gamma alpha L beta-conformations which are referred to as turns. In the regions where a polypeptide chain passes from one layer to another there are standard structures with beta gamma beta-, beta alpha beta beta-, beta alpha gamma beta-conformations etc., referred to as cross-overs. A structure of any protein irregular region can be represented as a combination of these and other standard turns and cross-overs considered in the paper. The major part of the turns and cross-overs has residues in alpha L- or epsilon-conformations which must be glycine or other residues with small or flexible side chains. Massive hydrophobic residues must not occupy the first beta-positions of the most standard structures. The results obtained can be successfully applied for prediction of the location of the turns and cross-overs in proteins from their amino acid sequences and for interpretation of electron density maps.  相似文献   

10.
The primary sequence Arg-Gly-Asp has been found in a number of proteins which bind to cell surface receptors. Studies with synthetic peptides have shown that the presence of charged side chains alone is not sufficient to confer binding activity. Application of folding algorithms to proteins and peptides having similar sequences indicates that binding activity is strongly correlated with the presence of two or more closely spaced residues that each have a high probability of initiating a beta-bend. Circular dichroic studies on the hexapeptide GRGDSP, whose sequence is contained in fibronectin and which also shows binding activity, demonstrate that it adopts an unusual conformation in aqueous solution. 1H-NMR spectra of the peptide in aqueous solution show that the two amide hydrogens of Asp4 and Ser5 exchange very slowly. Computer-assisted modeling using restrained molecular dynamics and energy minimization results in conformations that include two beta-bends of type III-III or III-I (hydrogen bonds 4----1 and 5----2), fully consistent with constraints imposed by 1H- and 13C-NMR data. It is suggested that this unusual secondary structure provides an additional specificity determinant.  相似文献   

11.
Adamian L  Liang J 《Proteins》2002,47(2):209-218
Polar and ionizable amino acid residues are frequently found in the transmembrane (TM) regions of membrane proteins. In this study, we show that they help to form extensive hydrogen bond connections between TM helices. We find that almost all TM helices have interhelical hydrogen bonding. In addition, we find that a pair of contacting TM helices is packed tighter when there are interhelical hydrogen bonds between them. We further describe several spatial motifs in the TM regions, including "Polar Clamp" and "Serine Zipper," where conserved Ser residues coincide with tightly packed locations in the TM region. With the examples of halorhodopsin, calcium-transporting ATPase, and bovine cytochrome c oxidase, we discuss the roles of hydrogen bonds in stabilizing helical bundles in polytopic membrane proteins and in protein functions.  相似文献   

12.
The SH3 domain folding transition state structure contains two well-ordered turn regions, known as the diverging turn and the distal loop. In the Src SH3 domain transition state, these regions are stabilized by a hydrogen bond between Glu30 in the diverging turn and Ser47 in the distal loop. We have examined the effects on folding kinetics of amino acid substitutions at the homologous positions (Glu24 and Ser41) in the Fyn SH3 domain. In contrast to most other folding kinetics studies which have focused primarily on non-disruptive substitutions with Ala or Gly, here we have examined the effects of substitutions with diverse amino acid residues. Using this approach, we demonstrate that the transition state structure is generally tolerant to amino acid substitutions. We also uncover a unique role for Ser at position 41 in facilitating folding of the distal loop, which can only be replicated by Asp at the same position. Both these residues appear to accelerate folding through the formation of short-range side-chain to backbone hydrogen bonds. The folding of the diverging turn region is shown to be driven primarily by local interactions. The diverging turn and distal loop regions are found to interact in the transition state structure, but only in the context of particular mutant backgrounds. This work demonstrates that studying the effects of a variety of amino acid substitutions on protein folding kinetics can provide unique insights into folding mechanisms which cannot be obtained by standard Phi value analysis.  相似文献   

13.
Substitutions of individual amino acids in proteins may be under very different evolutionary restraints depending on their structural and functional roles. The Environment Specific Substitution Table (ESST) describes the pattern of substitutions in terms of amino acid location within elements of secondary structure, solvent accessibility, and the existence of hydrogen bonds between side chains and neighbouring amino acid residues. Clearly amino acids that have very different local environments in their functional state compared to those in the protein analysed will give rise to inconsistencies in the calculation of amino acid substitution tables. Here, we describe how the calculation of ESSTs can be improved by discarding the functional residues from the calculation of substitution tables. Four categories of functions are examined in this study: protein–protein interactions, protein–nucleic acid interactions, protein–ligand interactions, and catalytic activity of enzymes. Their contributions to residue conservation are measured and investigated. We test our new ESSTs using the program CRESCENDO, designed to predict functional residues by exploiting knowledge of amino acid substitutions, and compare the benchmark results with proteins whose functions have been defined experimentally. The new methodology increases the Z-score by 98% at the active site residues and finds 16% more active sites compared with the old ESST. We also find that discarding amino acids responsible for protein–protein interactions helps in the prediction of those residues although they are not as conserved as the residues of active sites. Our methodology can make the substitution tables better reflect and describe the substitution patterns of amino acids that are under structural restraints only.  相似文献   

14.
Monotopic proteins make up a class of membrane proteins that bind tightly to, but do not span, cell membranes. We examine and compare how two monotopic proteins, monoamine oxidase B (MAO-B) and cyclooxygenase-2 (COX-2), interact with a phospholipid bilayer using molecular dynamics simulations. Both enzymes form between three and seven hydrogen bonds with the bilayer in our simulations with basic side chains accounting for the majority of these interactions. By analyzing lipid order parameters, we show that, to a first approximation, COX-2 disrupts only the upper leaflet of the bilayer. In contrast, the top and bottom halves of the lipid tails surrounding MAO-B are more and less ordered, respectively, than in the absence of the protein. Finally, we identify which residues are important in binding individual phospholipids by counting the number and type of lipid atoms that come close to each amino acid residue. The existing models that explain how these proteins bind to bilayers were proposed following inspection of the X-ray crystallographic structures. Our results support these models and suggest that basic residues contribute significantly to the binding of these monotopic proteins to bilayers through the formation of hydrogen bonds with phospholipids.  相似文献   

15.
The local environment of an amino acid in a folded protein determines the acceptability of mutations at that position. In order to characterize and quantify these structural constraints, we have made a comparative analysis of families of homologous proteins. Residues in each structure are classified according to amino acid type, secondary structure, accessibility of the side chain, and existence of hydrogen bonds from the side chains. Analysis of the pattern of observed substitutions as a function of local environment shows that there are distinct patterns, especially for buried polar residues. The substitution data tables are available on diskette with Protein Science. Given the fold of a protein, one is able to predict sequences compatible with the fold (profiles or templates) and potentially to discriminate between a correctly folded and misfolded protein. Conversely, analysis of residue variation across a family of aligned sequences in terms of substitution profiles can allow prediction of secondary structure or tertiary environment.  相似文献   

16.
Balaji S  Aruna S  Srinivasan N 《Proteins》2003,53(4):783-791
Occurrence and accommodation of charged amino acid residues in proteins that are structurally equivalent to buried non-polar residues in homologues have been investigated. Using a dataset of 1,852 homologous pairs of crystal structures of proteins available at 2A or better resolution, 14,024 examples of apolar residues in the structurally conserved regions replaced by charged residues in homologues have been identified. Out of 2,530 cases of buried apolar residues, 1,677 of the equivalent charged residues in homologues are exposed and the rest of the charged residues are buried. These drastic substitutions are most often observed in homologous protein pairs with low sequence identity (<30%) and in large protein domains (>300 residues). Such buried charged residues in the large proteins are often located in the interface of sub-domains or in the interface of structural repeats, Beyond 7A of residue depth of buried apolar residues, or less than 4% of solvent accessibility, almost all the substituting charged residues are buried. It is also observed that acidic sidechains have higher preference to get buried than the positively charged residues. There is a preference for buried charged residues to get accommodated in the interior by forming hydrogen bonds with another sidechain than the main chain. The sidechains interacting with a buried charged residue are most often located in the structurally conserved regions of the alignment. About 50% of the observations involving hydrogen bond between buried charged sidechain and another sidechain correspond to salt bridges. Among the buried charged residues interacting with the main chain, positively charged sidechains form hydrogen bonds commonly with main chain carbonyls while the negatively charged residues are accommodated by hydrogen bonding with the main chain amides. These carbonyls and amides are usually located in the loops that are structurally variable among homologous proteins.  相似文献   

17.
A possible code is suggested that describes a correspondence between amino acid sequences in stereospecific sites of regulatory proteins and nucleotide sequences at the control sites on DNA. Stereospecific sites of regulatory proteins are assumed to contain pairs of antiparallel polypeptide chain segments which form a right-hand twisted antiparallel -sheet with single-stranded regions at the ends of the -structure. The binding reaction between regulatory protein and double-helical DNA is accompanied by significant structural alterations at stereospecific sites of the protein and DNA. Half of the hydrogen bonds normally existing in -structure are broken upon complex formation with DNA and a new set of hydrogen bonds is formed between polypeptide amide groups and DNA base pairs. The code states a correspondence between four amino acid residues at a stereospecific site of the regulatory protein and an AT (GC) base pair at the control site. It predicts that there are six fundamental amino acid residues (serine, threonine, histidine, asparagine, glutamine and cysteine) whose arrangement in the stereospecific site determines the base pair sequence to which a given regulatory protein would bind preferentially.  相似文献   

18.
It was shown that cholesterol can interact with some guanidine group-containing compounds (guanidine proper, arginine, metformine and dodecylguanidine bromide) as well as with the arginine-rich proteins--apoproteins A-1 and E. In the latter case this interaction results in the formation of cholesterol-apoprotein complexes. Analysis of such complexes revealed that one apo-A-1 molecule binds 17-22, whereas one apo-E molecule--30-35 sterol molecules, which approximately correspondence to the amount of arginine residues in these proteins. The formation of cholesterol-apoprotein complexes seems to be due to: (1) formation of hydrogen bonds and ion-dipole interactions between the hydroxyl groups of cholesterol and the guanidine groups of the apoprotein arginine residues and, presumably, the carboxylic groups of aspartic or glutamic acids, eventually resulting in the production of chelate complexes; (2) hydrophobic interaction of the cholesterol aliphatic chain with the nonpolar side chains of the amino acids occupying the third position from arginine in the protein molecule.  相似文献   

19.
Protein molecules require both flexibility and rigidity for functioning. The fast and accurate prediction of protein rigidity/flexibility is one of the important problems in protein science. We have determined flexible regions for four homologous pairs from thermophilic and mesophilic organisms by two methods: the fast FoldUnfold which uses amino acid sequence and the time consuming MDFirst which uses three-dimensional structures. We demonstrate that both methods allow determining flexible regions in protein structure. For three of the four thermophile–mesophile pairs of proteins, FoldUnfold predicts practically the same flexible regions which have been found by the MD/First method. As expected, molecular dynamics simulations show that thermophilic proteins are more rigid in comparison to their mesophilic homologues. Analysis of rigid clusters and their decomposition provides new insights into protein stability. It has been found that the local networks of salt bridges and hydrogen bonds in thermophiles render their structure more stable with respect to fluctuations of individual contacts. Such network includes salt bridge triads Agr-Glu-Lys and Arg-Glu-Arg, or salt bridges (such as Arg-Glu) connected with hydrogen bonds. This ionic network connects alpha helices and rigidifies the structure. Mesophiles can be characterized by stand alone salt bridges and hydrogen bonds or small ionic clusters. Such difference in the network of salt bridges results in different flexibility of homologous proteins. Combining both approaches allows characterizing structural features in atomic detail that determine the rigidity/flexibility of a protein structure. This article is a part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

20.
Understanding the solvation of amino acids in biomembranes is an important step to better explain membrane protein folding. Several experimental studies have shown that polar residues are both common and important in transmembrane segments, which means they have to be solvated in the hydrophobic membrane, at least until helices have aggregated to form integral proteins. In this work, we have used computer simulations to unravel these interactions on the atomic level, and classify intramembrane solvation properties of amino acids. Simulations have been performed for systematic mutations in poly-Leu helices, including not only each amino acid type, but also every z-position in a model helix. Interestingly, many polar or charged residues do not desolvate completely, but rather retain hydration by snorkeling or pulling in water/headgroups--even to the extent where many of them exist in a microscopic polar environment, with hydration levels corresponding well to experimental hydrophobicity scales. This suggests that even for polar/charged residues a large part of solvation cost is due to entropy, not enthalpy loss. Both hydration level and hydrogen bonding exhibit clear position-dependence. Basic side chains cause much less membrane distortion than acidic, since they are able to form hydrogen bonds with carbonyl groups instead of water or headgroups. This preference is supported by sequence statistics, where basic residues have increased relative occurrence at carbonyl z-coordinates. Snorkeling effects and N-/C-terminal orientation bias are directly observed, which significantly reduces the effective thickness of the hydrophobic core. Aromatic side chains intercalate efficiently with lipid chains (improving Trp/Tyr anchoring to the interface) and Ser/Thr residues are stabilized by hydroxyl groups sharing hydrogen bonds to backbone oxygens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号