首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The Janus kinases (Jaks)   总被引:3,自引:0,他引:3  
  相似文献   

7.
8.
9.
10.
11.
12.
13.
Interleukin-2 (IL-2) activates several different families of tyrosine kinases, but precisely how these kinases interact is not completely understood. We therefore investigated the functional relationships among Jak3, Lck, and Syk in IL-2 signaling. We first observed that in the absence of Jak3, both Lck and Syk had the capacity to phosphorylate Stat3 and Stat5a. However, neither supported IL-2-induced STAT activation, nor did dominant negative alleles of these kinases inhibit. Moreover, pharmacological abrogation of Lck activity did not inhibit IL-2-mediated phosphorylation of Jak3 and Stat5a. Importantly, ligand-dependent Syk activation was dependent on the presence of catalytically active Jak3, whereas Lck activation was not. Interestingly, Syk functioned as a direct substrate of Jak1 but not Jak3. Additionally, Jak3 phosphorylated Jak1, whereas the reverse was not the case. Taken together, our data support a model in which Lck functions in parallel with Jak3, while Syk functions as a downstream element of Jaks in IL-2 signaling. Jak3 may regulate Syk catalytic activity indirectly via Jak1. However, IL-2-mediated Jak3/Stat activation is not dependent on Lck or Syk. While the essential roles of Jak1 and Jak3 in signaling by gammac-utilizing cytokines are clear, it will be important to dissect the exact contributions of Lck and Syk in mediating the effects of IL-2 and related cytokines.  相似文献   

14.
15.
The Janus kinases are considered to be cytoplasmic kinases that constitutively associate with the cytoplasmic region of cytokine receptors, and the Janus kinases (Jaks) are crucial for cytokine signal transduction. We investigated Jak1 localization using subcellular fractionation techniques and fluorescence microscopy (immunofluorescence and yellow fluorescent protein-tagged Jaks). In the different experimental approaches we found Jak1 (as well as Jak2 and Tyk2) predominantly located at membranes. In contrast to previous reports we did not observe Jak proteins in significant amounts within the nucleus or in the cytoplasm. The cytoplasmic localization observed for the Jak1 mutant L80A/Y81A, which is unable to associate with cytokine receptors, indicates that Jak1 does not have a strong intrinsic membrane binding potential and that only receptor binding is crucial for the membrane recruitment. Finally we show that Jak1 remains a membrane-localized protein after cytokine stimulation. These data strongly support the hypothesis that cytokine receptor.Janus kinase complexes can be regarded as receptor tyrosine kinases.  相似文献   

16.
The Janus protein tyrosine kinases (Jaks) play critical roles in transducing growth and differentiation signals emanating from ligand-activated cytokine receptor complexes. The activation of the Jaks is hypothesized to occur as a consequence of auto- or transphosphorylation on tyrosine residues associated with ligand-induced aggregation of the receptor chains and the associated Jaks. In many kinases, regulation of catalytic activity by phosphorylation occurs on residues within the activation loop of the kinase domain. Within the Jak2 kinase domain, there is a region that has considerable sequence homology to the regulatory region of the insulin receptor and contains two tyrosines, Y1007 and Y1008, that are potential regulatory sites. In the studies presented here, we demonstrate that among a variety of sites, Y1007 and Y1008 are sites of trans- or autophosphorylation in vivo and in in vitro kinase reactions. Mutation of Y1007, or both Y1007 and Y1008, to phenylalanine essentially eliminated kinase activity, whereas mutation of Y1008 to phenylalanine had no detectable effect on kinase activity. The mutants were also examined for the ability to reconstitute erythropoietin signaling in gamma2 cells, which lack Jak2. Consistent with the kinase activity, mutation of Y1007 to phenylalanine eliminated the ability to restore signaling. Moreover, phosphorylation of a kinase-inactive mutant (K882E) was not detected, indicating that Jak2 activation during receptor aggregation is dependent on Jak2 and not another receptor-associated kinase. The results demonstrate the critical role of phosphorylation of Y1007 in Jak2 regulation and function.  相似文献   

17.
Janus (Jak) tyrosine kinases contain a tyrosine kinase (JH1) domain adjacent to a catalytically inactive pseudokinase domain (JH2). The JH2 domain has been implicated in regulation of Jak activity, but its function remains poorly understood. Here, we found that the JH2 domain negatively regulates the activity of Jak2 and Jak3. Deletion of JH2 resulted in increased tyrosine phosphorylation of the Jak2- and Jak3-JH2 deletion mutants as well as of coexpressed STAT5. In cytokine receptor signaling, the deletion of the Jak2- and Jak3-JH2 domains resulted in interferon-gamma and interleukin-2-independent STAT activation, respectively. However, cytokine stimulations did not further induce the JH2 deletion mutant-mediated STAT activation. The deletion of the Jak2 JH2 domain also abolished interferon-gamma-inducible kinase activation, although it did not affect the reciprocal Jak1-Jak2 interaction in 293T cells. Chimeric constructs, where the JH2 domains were swapped between Jak2 and Jak3, retained low basal activity and cytokine inducible signaling, indicating functional conservation between the two JH2 domains. However, the basal activity of Jak2 was significantly lower than that of Jak3, suggesting differences in the regulation of Jak2 and Jak3 activity. In conclusion, we found that the JH2 domain has a conserved function in Jak2 and Jak3. The JH2 domain is required for two distinct functions in cytokine signaling: (i) inhibition of the basal activity of Jak2 and Jak3, and (ii) cytokine-inducible activation of signaling. The Jak-JH2 deletion mutants are catalytically active, activate STAT5, and interact with another Jak kinase, but the JH2 domain is required to connect these signaling events to receptor activation. Thus, we propose that the JH2 domain contributes to both the uninduced and ligand-induced Jak-receptor complex, where it acts as a cytokine-inducible switch to regulate signal transduction.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号