首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the meiotic recombination behavior of strains carrying two types of duplications of an 18.6-kilobase HIS4 Bam HI fragment. The first type is a direct duplication of the HIS4 Bam HI fragment in which the repeated sequences are separated by Escherichia coli plasmid sequences. The second type, a tandem duplication, has no sequences intervening between the repeated yeast DNA. The HIS4 genes in each region were marked genetically so that recombination events between the duplicated segments could be identified. Meiotic progeny of the strains carrying the duplication were analyzed genetically and biochemically to determine the types of recombination events that had occurred. Analysis of the direct vs. tandem duplication suggests that the E. coli plasmid sequences are recombinogenic in yeast when homozygous. In both types of duplications recombination between the duplicated HIS4 regions occurs at high frequency and involves predominantly interchromosomal reciprocal exchanges (equal and unequal crossovers). The striking observation is that intrachromosomal reciprocal recombination is very rare in comparison with interchromosomal reciprocal recombination. However, intrachromosomal gene conversion occurs at about the same frequency as interchromosomal gene conversion. Reciprocal recombination events between regions on the same chromatid are the most infrequent exchanges. These data suggest that intrachromosomal reciprocal exchanges are suppressed.  相似文献   

2.
We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoints were highly variable, distal breakpoints tended to cluster around low-copy repeats (LCRs) (50% of distal breakpoints), and each duplication event appeared to be unique (100 kb to 4.6 Mb in size). Sequence analysis of the junctions revealed no large homologous regions between proximal and distal breakpoints. Most junctions had microhomology of 1-6 bases, and one had a 2-base insertion. Boundaries between single-copy and duplicated DNA were identical to the reference genomic sequence in all patients investigated. Taken together, these data suggest that the tandem duplications are formed by a coupled homologous and nonhomologous recombination mechanism. We suggest repair of a double-stranded break (DSB) by one-sided homologous strand invasion of a sister chromatid, followed by DNA synthesis and nonhomologous end joining with the other end of the break. This is in contrast to other genomic disorders that have recurrent rearrangements formed by nonallelic homologous recombination between LCRs. Interspersed repetitive elements (Alu elements, long interspersed nuclear elements, and long terminal repeats) were found at 18 of the 26 breakpoint sequences studied. No specific motif that may predispose to DSBs was revealed, but single or alternating tracts of purines and pyrimidines that may cause secondary structures were common. Analysis of the 2-Mb region susceptible to duplications identified proximal-specific repeats and distal LCRs in addition to the previously reported ones, suggesting that the unique genomic architecture may have a role in nonrecurrent rearrangements by promoting instability.  相似文献   

3.
We have determined the genetic stability of three independent intragenic human HPRT gene duplications and the structure of each duplication at the nucleotide sequence level. Two of the duplications were isolated as spontaneous mutations from the HL60 human myeloid leukemia cell line, while the third was originally identified in a Lesch-Nyhan patient. All three duplications are genetically unstable and have a reversion rate approximately 100-fold higher than the rate of duplication formation. The molecular structures of these duplications are similar, with direct duplication of HPRT exons 2 and 3 and of 6.8 kb (HL60 duplications) or 13.7 kb (Lesch-Nyhan duplication) of surrounding HPRT sequence. Nucleotide sequence analyses of duplication junctions revealed that the HL60-derived duplications were generated by unequal homologous recombination between clusters of Alu repeats contained in HPRT introns 1 and 3, while the Lesch-Nyhan duplication was generated by the nonhomologous insertion of duplicated HPRT DNA into HPRT intron 1. These results suggest that duplication substrates of different lengths can be generated from the human HPRT exon 2-3 region and can undergo either homologous or nonhomologous recombination with the HPRT locus to form gene duplications.  相似文献   

4.
Propok'ev VV  Sukhodolets VV 《Genetika》2005,41(8):1038-1044
Homologous recombination between direct DNA repeats in tandem duplications usually leads to their dissociation. An even number of crossovers between two copies of a duplication should lead to the formation of diploid segregants, i.e., to the preservation of the duplication. However, in studies of the genotype of diploid segregants in heterozygous tandem duplications of Escherichia coli, it was shown that they arise by unequal exchanges between sister chromosomes rather than by intrachromosomal exchanges. Generally, these exchanges lead to the establishment of the homozygous state of (heterozygous) duplications. Since the available data suggest that the exchange between sister chromosomes may be coupled with DNA replication, it is supposed that unequal exchanges between direct DNA repeats occur in the process of DNA replication.  相似文献   

5.
Heterozygous tandem duplications that appear in Escherichia coli conjugation matings segregate different types of haploid and diploid recombinants because of unequal crossing over between sister chromosomes. As shown previously, the frequency of segregants in the extended duplication D104 (approximately 150 kb or more than 3 min of the genetic map) heterozygous for E. coli deo-operon genes (deoA deoB::Tn5/deoC deoD) is not decreased in strains with defective RecBCD and RecF recombination pathways. Analysis of a shorter duplication of this type (approximately 46 kb) showed that the frequency of segregants in the strain recBC sbcBC recF was similar to that in a strain with undamaged system of recombination. Thus, genetic exchange between direct DNA repeats in tandem duplications may follow a special pathway of homologous recombination, which is independent of the recBC and recF genes.  相似文献   

6.
Sukhodolets VV 《Genetika》2006,42(7):869-878
In a number of works dealing with the relationship between replication and recombination in bacteria, it is assumed that recombinations permit the replication forks to resume moving after having stopped at the damage sites of the template DNA. As an evidence for recombination occurring during DNA replication, the involvement in this process of proteins RuvABC and RecG, providing processing of the Holliday junctions after recombination, is considered. However, it has been shown that these proteins are not essential for resuming DNA synthesis after an exposure of bacteria to UV light. These data cast doubt on the necessity of recombination for reactivation of replication initiated in the oriC region. Studying recombination in tandem duplications in Escherichia coli showed that during replication, unequal crossing over occurs between direct DNA repeats of sister chromosomes. In wild strains, this crossing over results in tandem duplications, thereby enhancing the expression of certain genes. Thus, recombination of two types occurs during DNA replication: unequal crossing over leading to duplications and homologous exchange, responsible for post-replication DNA repair. The unequal exchange constitutes a component of SOS response of the cell to deterioration of the environment.  相似文献   

7.
In a number of works dealing with the relationship between replication and recombination in bacteria, it is assumed that recombinations permit the replication forks to resume moving after having stopped at the damage sites of the template DNA. As an evidence for recombination occurring during DNA replication, the involvement in this process of proteins RuvABC and RecG, providing processing of the Holliday junctions after recombination, is considered. However, it has been shown that these proteins are not essential for resuming DNA synthesis after an exposure of bacteria to UV light. These data cast doubt on the necessity of recombination for reactivation of replication initiated in the oriC region. Studying recombination in tandem duplications in Escherichia coli showed that during replication, unequal crossing over occurs between direct DNA repeats of sister chromosomes. In wild strains, this crossing over results in tandem duplications, thereby enhancing the expression of certain genes. Thus, recombination of two types occurs during DNA replication: unequal crossing over leading to duplications and homologous exchange, responsible for post-replication DNA repair. The unequal exchange constitutes a component of SOS response of the cell to deterioration of the environment.  相似文献   

8.
Homologous recombination between direct DNA repeats in tandem duplications usually leads to their dissociation. An even number of crossovers between two copies of a duplication should lead to the formation of diploid segregants, i.e., to the preservation of the duplication. However, in studies of the genotype of diploid segregants in heterozygous tandem duplications of Escherichia coli, it was shown that they arise by unequal exchanges between sister chromosomes rather than by intrachromosomal exchanges. Generally, these exchanges lead to the establishment of the homozygous state of (heterozygous) duplications. Since the available data suggest that the exchange between sister chromosomes may be coupled with DNA replication, it is supposed that unequal exchanges between direct DNA repeats occur in the process of DNA replication.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1038–1044.Original Russian Text Copyright © 2005 by Prokop’ev, Sukhodolets.  相似文献   

9.
Site-specific recombination provides a powerful tool for studying gene function at predetermined chromosomal sites. Here we describe the use of a blasticidin resistance system to select for recombination in mammalian cells using the yeast enzyme FLP. The vector is designed so that site-specific recombination reconstructs the antibiotic resistance marker within the sequences flanked by the FLP target sites. This approach allows the detection of DNA excised by FLP-mediated recombination and facilitates the recovery of recombination products that would not be detected by available screening strategies. We used this system to show that the molecules excised by intrachromosomal recombination between tandem FLP recombinase target sites do not reintegrate into the host genome at detectable frequencies. We further applied the direct selection approach to recover a rare FLP-mediated recombination event displaying the characteristics of an unequal sister chromatid exchange between FLP target sites. Implications of this approach for the generation of duplications to assess their effect on gene dosage and chromosome stability are discussed.  相似文献   

10.
We used haploid yeast cells that express both the MATa and MAT alpha mating-type alleles and contain the spo13-1 mutation to characterize meiotic recombination within single, unpaired chromosomes in Rec+ and Rec- Saccharomyces cerevisiae. In Rec+ haploids, as in diploids, intrachromosomal recombination in the ribosomal DNA was detected in 2 to 6% of meiotic divisions, and most events were unequal reciprocal sister chromatid exchange (SCE). By contrast, intrachromosomal recombination between duplicated copies of the his4 locus occurred in approximately 30% of haploid meiotic divisions, a frequency much higher than that reported in diploids; only about one-half of the events were unequal reciprocal SCE. The spo11-1 mutation, which virtually eliminates meiotic exchange between homologs in diploid meiosis, reduced the frequency of intrachromosomal recombination in both the ribosomal DNA and the his4 duplication during meiosis by 10- to greater than 50-fold. This Rec- mutation affected all forms of recombination within chromosomes: unequal reciprocal SCE, reciprocal intrachromatid exchange, and gene conversion. Intrachromosomal recombination in spo11-1 haploids was restored by transformation with a plasmid containing the wild-type SPO11 gene. Mitotic intrachromosomal recombination frequencies were unaffected by spo11-1. This is the first demonstration of a gene product required for recombination between homologs as well as recombination within chromosomes during meiosis.  相似文献   

11.
J. T. Irelan  A. T. Hagemann    E. U. Selker 《Genetics》1994,138(4):1093-1103
Duplicated DNA sequences in Neurospora crassa are efficiently detected and mutated during the sexual cycle by a process named repeat-induced point mutation (RIP). Linked, direct duplications have previously been shown to undergo both RIP and deletion at high frequency during premeiosis, suggesting a relationship between RIP and homologous recombination. We have investigated the relationship between RIP and recombination for an unlinked duplication and for both inverted and direct, linked duplications. RIP occurred at high frequency (42-100%) with all three types of duplications used in this study, yet recombination was infrequent. For both inverted and direct, linked duplications, recombination was observed, but at frequencies one to two orders of magnitude lower than RIP. For the unlinked duplication, no recombinants were seen in 900 progeny, indicating, at most, a recombination frequency nearly three orders of magnitude lower than the frequency of RIP. In a direct duplication, RIP and recombination were correlated, suggesting that these two processes are mechanistically associated or that one process provokes the other. Mutations due to RIP have previously been shown to occur outside the boundary of a linked, direct duplication, indicating that RIP might be able to inactivate genes located in single-copy sequences adjacent to a duplicated sequence. In this study, a single-copy gene located between elements of linked duplications was inactivated at moderate frequencies (12-14%). Sequence analysis demonstrated that RIP mutations had spread into these single-copy sequences at least 930 base pairs from the boundary of the duplication, and Southern analysis indicated that mutations had occurred at least 4 kilobases from the duplication boundary.  相似文献   

12.
Heterozygous tandem duplications formed in conjugational matings in Escherichia coli provides a convenient model system for studying the evolution of bacterial chromosome. Heterozygous duplications segregate various classes of haploid and diploid recombinants that appear as a result of unequal crossing over between sister chromosomes. In this work, an extended tandem duplication in the deo operon of E. coli carrying deoA deoB::Tn5/deoC deoD thr::Tn9 alleles was examined. Recombination between homologous DNA repeats in the duplication was studied in strains carrying different combinations of recBC, sbcBC, recB::Tn10, recQ::Tn3 mutations. The frequency of recombination between homologous DNA repeats was very high in all strains and did not decrease when the RecBCD and RecF recombinational pathways were simultaneously damaged in strains with the recB sbcBC recQ (or recF) genotype. It is assumed that unequal crossing over between direct DNA repeats in duplications may proceed through a particular pathway of "adaptive" recombination.  相似文献   

13.
L. C. Kadyk  L. H. Hartwell 《Genetics》1993,133(3):469-487
Homolog recombination and unequal sister chromatid recombination were monitored in rad1-1/rad1-1 diploid yeast cells deficient for excision repair, and in control cells, RAD1/rad1-1, after exposure to UV irradiation. In a rad1-1/rad1-1 diploid, UV irradiation stimulated much more sister chromatid recombination relative to homolog recombination when cells were irradiated in the G(1) or the G(2) phases of the cell cycle than was observed in RAD1/rad1-1 cells. Since sister chromatids are not present during G(1), this result suggested that unexcised lesions can stimulate sister chromatid recombination events during or subsequent to DNA replication. The results of mating rescue experiments suggest that unexcised UV dimers do not stimulate sister chromatid recombination during the G(2) phase, but only when they are present during DNA replication. We propose that there are two types of sister chromatid recombination in yeast. In the first type, unexcised UV dimers and other bulky lesions induce sister chromatid recombination during DNA replication as a mechanism to bypass lesions obstructing the passage of DNA polymerase, and this type is analogous to the type of sister chromatid exchange commonly observed cytologically in mammalian cells. In the second type, strand scissions created by X-irradiation or the excision of damaged bases create recombinogenic sites that result in sister chromatid recombination directly in G(2). Further support for the existence of two types of sister chromatid recombination is the fact that events induced in rad1-1/rad1-1 were due almost entirely to gene conversion, whereas those in RAD1/rad1-1 cells were due to a mixture of gene conversion and reciprocal recombination.  相似文献   

14.
Our previous data showed that the principal pathway of the formation of selected recombinants in Escherichia coli strains carrying heterozygous tandem duplications is unequal crossing over between sister chromosomes. Data presented in this work showed that when DNA homology is not disturbed (due to transposon insertion), intragenic recombinants can occur directly in the region of recombination through intrachromomal exchange as well.  相似文献   

15.
Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines.  相似文献   

16.
S Gangloff  H Zou    R Rothstein 《The EMBO journal》1996,15(7):1715-1725
The genomic stability of the rDNA tandem array in yeast is tightly controlled to allow sequence homogenization and at the same time prevent deleterious rearrangements. In our study, we show that gene conversion, and not unequal sister chromatid exchange, is the predominant recombination mechanism regulating the expansion and contraction of the rDNA array. Furthermore, we found that RAD52, which is essential for gene conversion, is required for marker duplication stimulated in the absence of the two yeast type I topoisomerases. Our results have implications for the mechanisms regulating genomic stability of repetitive sequence families found in all eukaryotes.  相似文献   

17.
Sukhodolets VV 《Genetika》2004,40(8):1046-1052
Homologous recombination between direct DNA repeats within the extended tandem duplications in E. coli results from unequal sister-chromosome exchanges. This conclusion follows from the observations on the segregation of completely or partly homozygous diploid segregants by heterozygous duplications. The formation of diploid segregants with preserved heterozygosity for the unselected markers could also result from "symmetrical" intrachromosomal recombination. Analysis of the segregant genotypes, however, confirmed their formation via unequal crossing over. The data obtained indicated that in tandem duplications segregation of diploid recombinants of different types was preceded by the formation of triplications as the products of unequal sister-chromosome exchanges. In heterozygous duplications, unequal crossing over is manifested as a highly frequent adaptive exchange, providing the survival of the most part of the duplication-carrying cells on selective medium. It is suggested that adaptive mutagenesis can be the consequence of unequal sister crossing over.  相似文献   

18.
Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light-strand replication and the nearby tRNA genes or the regions flanking the origin of heavy-strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and nontandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mitochondrial DNAs, up to 25% of the total length is composed of tandem duplications of noncoding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with the otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intramolecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.  相似文献   

19.
Our previous data showed that the principal pathway of the formation of selected recombinants in Escherichia coli strains carrying heterozygous tandem duplications is unequal crossing over between sister chromosomes. Data presented in this work showed that when DNA homology is not disturbed (due to transposon insertion), intragenic recombinants can occur directly in the region of recombination through intrachromomal exchange as well.  相似文献   

20.
Sukhodolets VV 《Genetika》2006,42(11):1526-1535
Unequal crossing-over between sister chromosomes in the process of DNA replication in Escherichia coli leads to the formation of tandem duplications, thus enhancing the activity of certain genes. In conjugational matings between genetically marked E. coli strains, unequal crossing-over leads to the formation of heterozygous tandem duplications. Studying these duplications as model systems allowed the conclusion that unequal crossing-over between direct DNA repeats of sister chromosomes is the main pathway of the formation of selected recombinants in E. coli strains carrying duplications. This was inferred from the data on the segregation of homozygous diploid recombinants by heterozygous duplications. Unequal crossing-over between sister chromosomes occurs as adaptive exchange providing the survival of the greater part of bacterial cells on a selective medium. The known phenomenon of adaptive mutagenesis may also be a consequence of unequal exchanges at the level of DNA mononucleotide repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号