共查询到20条相似文献,搜索用时 15 毫秒
1.
Akimova OA Bagrov AY Lopina OD Kamernitsky AV Tremblay J Hamet P Orlov SN 《The Journal of biological chemistry》2005,280(1):832-839
Recently, we reported that ouabain kills renal epithelial and vascular endothelial cells independently of elevation of the [Na(+)](i)/[K(+)](i) ratio. These observations raised the possibility of finding cardiotonic steroids (CTS) that inhibit the Na(+),K(+) pump without attenuating cell survival and vice versa. To test this hypothesis, we compared CTS action on Na(+),K(+) pump, [Na(+)](i) content, and survival of Madin-Darby canine kidney cells. At a concentration of 1 microM, ouabain and other tested cardenolides, as well as bufadienolides such as bufalin, cinobufagin, cinobufotalin, and telobufotoxin, led to approximately 10-fold inhibition of the Na(+),K(+) pump, a 2-3-fold decrease in staining with dimethylthiazol-diphenyltetrazolium (MTT), and massive death indicated by detachment of approximately 80% of cells and caspase-3 activation. In contrast, Na(+),K(+) pump inhibition and elevation of [Na(+)](i) seen in the presence of 3 microM marinobufagenin (MBG) and marinobufotoxin did not affect MTT staining and cell survival. Inhibition of the Na(+),Rb(+) pump in K(+)-free medium was not accompanied by a decline of MTT staining and cell detachment but increased sensitivity to CTS. In K(+)-free medium, half-maximal inhibition of (86)Rb influx was observed in the presence of 0.04 microM ouabain and 0.1 microM MBG, whereas half-maximal detachment and decline of MTT staining were detected at 0.03 and 0.004 microM of ouabain versus 10 and 3 microM of MBG, respectively. Both ouabain binding and ouabain-induced [Na(+)](i),[K(+)](i)-independent signaling were suppressed in the presence of MBG. Thus, our results show that CTS exhibit distinctly different potency in Na(+),K(+) pump inhibition and triggering of [Na(+)](i)/[K(+)](i)-independent signaling, including cell death. 相似文献
2.
A [Na+]o-independent, pHo-dependent mechanism for reduction of intracellular [Ca2+] after influx through Ca2+ channels in mouse pituitary cells 下载免费PDF全文
The effect of extracellular pH (pHo) on the duration of calcium-dependent chloride currents (ICl(Ca] was studied in voltage clamped AtT-20 pituitary cells. ICl(Ca) was activated by Ca2+ influx through plasma membrane Ca2+ channels, which were opened by step depolarization to voltages between -20 and +60 mV. Increasing pHo from 7.3 to 8.0 reversibly prolonged ICl(Ca) tail currents in perforated patch recordings from cells bathed in both Na(+)-containing and Na(+)-free solutions. This prolongation was prevented in standard whole cell recordings when the pipette solution contained 0.5 mM EGTA. The effects of raised pHo were not due to alteration of intracellular pH, since tail current prolongation still occurred when intracellular pH was buffered at 7.3 with 80 mM HEPES. The prolongation of ICl(Ca) at pHo 8 could not be accounted for by a direct action on Ca2+ channels, since tail currents were prolonged when pHo was changed rapidly during the tail current, after all Ca2+ channels were closed. The effects of increasing pHo on ICl(Ca) also could not be explained by a direct action on Cl- channels, since changing to pHo 8 did not prolong Cl- tail currents when intracellular Ca2+ concentration [( Ca2+]i) was fixed by EGTA in whole cell recordings. Raising pHo did, however, prolong depolarization-evoked [Ca2+]i transients, measured directly with the Ca2+ indicator dye, fura-2. Taken together, these data demonstrate the presence of a Na(+)-independent, pHo-sensitive mechanism for reduction of [Ca2+]i after influx through Ca2+ channels. This mechanism is associated with the plasma membrane, and is active on a time scale that is relevant to the duration of single action potentials in these cells. We suggest that this mechanism is the plasma membrane Ca2+ ATPase. 相似文献
3.
Quantitation of cytosolic [Ca2+] in whole perfused rat hearts using Indo-1 fluorometry. 总被引:2,自引:1,他引:2 下载免费PDF全文
Fluorometric determination of cytosolic calcium, [Ca2+]c, using Indo-1 in intact tissue, is limited by problems in obtaining calibration parameters for Indo-1 in vivo. Therefore, the goal of this study was to calibrate Indo-1 using in vitro constants, obtained from protein-containing reference solutions designed to produce similar Indo-1 spectral properties to those in vivo. Due to wavelength-dependent tissue light absorbance, the in vitro constants had to be absorbance-corrected using a novel method. The correction factor was calculated from the relationship between the Indo-1 fluorescence intensities at the two detection wavelengths. A mixture of proteins at approximately 28 mg/ml had a similar Indo-1 isosbestic wavelength (430 nm) to that found in vivo (427 nm), and a similar fluorescence ratio maximum with saturating Ca2+ to that found in vivo (after absorbance correction). Using calibration constants from this protein mixture, calculated [Ca2+]c in a Langendorf perfused rat heart was 187 nM during diastole, and 464 nM in systole. This new calibration method circumvented the considerable experimental problems of previous methods which required measurements with the cytosol fully depleted and fully saturated with Ca2+. 相似文献
4.
Birkedal R Shiels HA 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(2):R861-R866
Intracellular Na(+)-concentration, [Na(+)](i) modulates excitation-contraction coupling of cardiac myocytes via the Na(+)/Ca(2+) exchanger (NCX). In cardiomyocytes from rainbow trout (Oncorhyncus mykiss), whole cell patch-clamp studies have shown that Ca(2+) influx via reverse-mode NCX contributes significantly to contraction when [Na(+)](i) is 16 mM but not 10 mM. However, physiological [Na(+)](i) has never been measured. We recorded [Na(+)](i) using the fluorescent indicator sodium-binding benzofuran isophthalate in freshly isolated atrial and ventricular myocytes from rainbow trout. We examined [Na(+)](i) at rest and during increases in contraction frequency across three temperatures that span those trout experience in nature (7, 14, and 21 degrees C). Surprisingly, we found that [Na(+)](i) was not different between atrial and ventricular cells. Furthermore, acute temperature changes did not affect [Na(+)](i) in resting cells. Thus, we report a resting in vivo [Na(+)](i) of 13.4 mM for rainbow trout cardiomyocytes. [Na(+)](i) increased from rest with increases in contraction frequency by 3.2, 4.7, and 6.5% at 0.2, 0.5, and 0.8 Hz, respectively. This corresponds to an increase of 0.4, 0.6, and 0.9 mM at 0.2, 0.5, and 0.8 Hz, respectively. Acute temperature change did not significantly affect the contraction-induced increase in [Na(+)](i). Our results provide the first measurement of [Na(+)](i) in rainbow trout cardiomyocytes. This surprisingly high [Na(+)](i) is likely to result in physiologically significant Ca(2+) influx via reverse-mode NCX during excitation-contraction coupling. We calculate that this Ca(2+)-source will decrease with the action potential duration as temperature and contraction frequency increases. 相似文献
5.
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential. 相似文献
6.
《The Journal of general physiology》1995,106(6):1243-1263
In a companion paper (Zhao, H., and S. Muallem. 1995), we describe the relationship between the major Na+,K+, and Cl- transporters in resting pancreatic acinar cells. The present study evaluated the role of the different transporters in regulating [Na+]i and electrolyte secretion during agonist stimulation. Cell stimulation increased [Na+]i and 86Rb influx in an agonist-specific manner. Ca(2+)-mobilizing agonists, such as carbachol and cholecystokinin, activated Na+ influx by a tetraethylammonium-sensitive channel and the Na+/H+ exchanger to rapidly increase [Na+]i from approximately 11.7 mM to between 34 and 39 mM. As a consequence, the NaK2Cl cotransporter was largely inhibited and the activity of the Na+ pump increased to mediate most of the 86Rb(K+) uptake into the cells. Secretin, which increases cAMP, activated the NaK2Cl cotransporter and the Na+/H+ exchanger to slowly increase [Na+]i from approximately 11.7 mM to an average of 24.6 mM. Accordingly, secretin increased total 86Rb uptake more than the Ca(2+)- mobilizing agonists and the apparent coupling between the NaK2Cl cotransport and the Na+ pump. All the effects of secretin could be attributed to an increase in cAMP, since forskolin affected [Na+]i and 86Rb fluxes similar to secretin. The signaling pathways mediating the effects of the Ca(2+)-mobilizing agonists were less clear. Although an increase in [Ca2+]i was required, it was not sufficient to account for the effect of the agonists. Activation of protein kinase C stimulated the NaK2Cl cotransporter to increase [Na+]i and 86Rb fluxes without preventing the inhibition of the cotransporter by Ca(2+)-mobilizing agonists. The effects of the agonists were not mediated by changes in cell volume, since cell swelling and shrinkage did not reproduce the effect of the agonists on [Na+]i and 86Rb fluxes. The overall findings of the relationships between the various Na+,K+, and Cl- transporters in resting and stimulated pancreatic acinar cells are discussed in terms of possible models of fluid and electrolyte secretion by these cells. 相似文献
7.
The yeast prions [PSI+] and [PIN+] are self-propagating amyloid aggregates of the Gln/Asn-rich proteins Sup35p and Rnq1p, respectively. Like the mammalian PrP prion "strains," [PSI+] and [PIN+] exist in different conformations called variants. Here, [PSI+] and [PIN+] variants were used to model in vivo interactions between co-existing heterologous amyloid aggregates. Two levels of structural organization, like those previously described for [PSI+], were demonstrated for [PIN+]. In cells with both [PSI+] and [PIN+] the two prions formed separate structures at both levels. Also, the destabilization of [PSI+] by certain [PIN+] variants was shown not to involve alterations in the [PSI+] prion size. Finally, when two variants of the same prion that have aggregates with distinct biochemical characteristics were combined in a single cell, only one aggregate type was propagated. These studies demonstrate the intracellular organization of yeast prions and provide insight into the principles of in vivo amyloid assembly. 相似文献
8.
An insulin-sensitive cation channel controls [Na+]i via [Ca2+]o-regulated Na+ and Ca2+ entry. 下载免费PDF全文
The insulin-stimulated cation channel previously identified in patch-clamped muscle preparations is here shown to be responsible for bulk Na+ entry into the cell. The mainly Na+ current of the channel was shown to be accompanied by an inhibitory Ca2+ component responsible for oscillations. Here, using quantitative fluorescence imaging of Fura-2- and SBFI-loaded soleus muscle, we measure changes in [Na+]i and [Ca2+]i related to channel function. Insulin increased [Na+]i and [Ca+]i in a transient spike of < 1-min duration. There was a momentary dip in [Na+]i related to inhibition of the channel by the Ca2+ spike, and changes in external Ca2+ were shown to alter [Na+]i via the cation channel, all effects being blocked by the specific channel inhibitor mu-conotoxin, but not by tetrodotoxin. The [Ca2+]i spike could also be induced by 8-bromo cyclic-guanosine 5'-monophosphate, an analogue of the channel-activator cyclic-guanosine 5'-monophosphate (cGMP). In addition it was noted that insulin reduced the [Ca2+]i rise upon subsequent muscle depolarization by a factor of 3.5. Insulin could be substituted with phorbol ester for the same effect and HA1004, a protein kinase inhibitor, blocked the reduction. 相似文献
9.
Many regulatory steps precede final membrane fusion in neuroendocrine cells. Some parts of this preparatory cascade, including fusion and priming, are dependent on the intracellular Ca(2+) concentration ([Ca(2+)](i)). However, the functional implications of [Ca(2+)](i) in the regulation of docking remain elusive and controversial due to an inability to determine the modulatory effect of [Ca(2+)](i). Using a combination of TIRF-microscopy and electrophysiology we followed the movement of large dense core vesicles (LDCVs) close to the plasma membrane, simultaneously measuring membrane capacitance and [Ca(2+)](i). We found that a free [Ca(2+)](i) of 700 nM maximized the immediately releasable pool and minimized the lateral mobility of vesicles, which is consistent with a maximal increase of the pool size of primed LDCVs. The parameters that reflect docking, i.e. axial mobility and the fraction of LDCVs residing at the plasma membrane for less than 5 seconds, were strongly decreased at a free [Ca(2+)](i) of 500 nM. These results provide the first evidence that docking and priming occur at different free intracellular Ca(2+) concentrations, with docking efficiency being the most robust at 500 nM. 相似文献
10.
Estimation of intracellular [Ca2+] by nonlinear indicators. A quantitative analysis 总被引:4,自引:1,他引:4 下载免费PDF全文
When spatial gradients of intracellular free [Ca2+] are present, intracellular calcium indicators that have a nonlinear response to [Ca2+] may yield an estimate of [Ca2+] that differs from the spatial average [Ca2+]. We present two rules that provide (a) general criteria to distinguish those classes of indicators that will yield an overestimate of spatial average [Ca2+] from those that will yield an underestimate, and (b) limits on the extent to which spatial average [Ca2+] might be over- or underestimated. These rules are used to interpret quantitatively the aequorin luminescence signals obtained from cardiac ventricular myocardium. 相似文献
11.
12.
Parathyroid hormone inhibition of Na+/phosphate cotransport in OK cells: intracellular [Ca2+] as a second messenger 总被引:1,自引:0,他引:1
Parathyroid hormone increases cellular cAMP, 1,2-diacylglycerol, inositol 1,4,5-trisphosphate and cytosolic Ca2+ concentration ([Ca2+]i) in OK cells. In the present study, we determined the importance of the PTH-dependent increase in [Ca2+]i in the control of sodium-dependent phosphate (Na+/Pi) cotransport. PTH (10(-7) M) results in a transient increase in [Ca2+]i from basal levels of 67 +/- 4 nM to maximal concentrations of 190 +/- 9 nM. The increase in [Ca2+]i was dose-dependent with half-maximal increases at about 5.10(-8) M PTH. These hormone levels were 10(3)-fold higher than that required for half-maximal inhibition of Na+/Pi cotransport. Clamping [Ca2+]i with either intracellular Ca2+ chelators or by ionomycin in the presence of high concentrations of extracellular Ca2+ did not alter PTH-dependent inhibition of Na/Pi cotransport. Nor did indomethacin, an inhibitor of the cyclooxygenase pathway, influence the hormonal inhibition of cotransport. Accordingly, these data suggest that changes in [Ca2+]i and/or activation of the phospholipase A2 and the cyclooxygenase pathways are not involved in signal induction of the PTH-mediated control of Na+/Pi cotransport. 相似文献
13.
There are well-documented differences in ion channel activity and action potential shape between epicardial (EPI), midmyocardial (MID), and endocardial (ENDO) ventricular myocytes. The purpose of this study was to determine if differences exist in Na/K pump activity. The whole cell patch-clamp was used to measure Na/K pump current (I(P)) and inward background Na(+)-current (I(inb)) in cells isolated from canine left ventricle. All currents were normalized to membrane capacitance. I(P) was measured as the current blocked by a saturating concentration of dihydro-ouabain. [Na(+)](i) was measured using SBFI-AM. I(P)(ENDO) (0.34 +/- 0.04 pA/pF, n = 17) was smaller than I(P)(EPI) (0.68 +/- 0.09 pA/pF, n = 38); the ratio was 0.50 with I(P)(MID) being intermediate (0.53 +/- 0.13 pA/pF, n = 19). The dependence of I(P) on [Na(+)](i) or voltage was essentially identical in EPI and ENDO (half-maximal activation at 9-10 mM [Na(+)](i) or approximately -90 mV). Increasing [K(+)](o) from 5.4 to 15 mM caused both I(P)(ENDO) and I(P)(EPI) to increase, but the ratio remained approximately 0.5. I(inb) in EPI and ENDO were nearly identical ( approximately 0.6 pA/pF). Physiological [Na(+)](i) was lower in EPI (7 +/- 2 mM, n = 31) than ENDO (12 +/- 3 mM, n = 29), with MID being intermediate (9 +/- 3 mM, n = 22). When cells were paced at 2 Hz, [Na(+)](i) increased but the differences persisted (ENDO 14 +/- 3 mM, n = 10; EPI 9 +/- 2 mM, n = 10; and MID intermediate, 11 +/- 2 mM, n = 9). Based on these results, the larger I(P) in EPI appears to reflect a higher maximum turnover rate, which implies either a larger number of active pumps or a higher turnover rate per pump protein. The transmural gradient in [Na(+)](i) means physiological I(P) is approximately uniform across the ventricular wall, whereas transporters that utilize the transmembrane electrochemical gradient for Na(+), such as Na/Ca exchange, have a larger driving force in EPI than ENDO. 相似文献
14.
15.
Inhibition of Na+,K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio 总被引:1,自引:0,他引:1
Pchejetski D Taurin S Der Sarkissian S Lopina OD Pshezhetsky AV Tremblay J deBlois D Hamet P Orlov SN 《Biochemical and biophysical research communications》2003,301(3):735-744
Treatment with ouabain led to massive death of principal cells from collecting ducts (C7-MDCK), indicated by cell swelling, loss of mitochondrial function, an irregular pattern of DNA degradation, and insensitivity to pan-caspase inhibitor. Equimolar substitution of extracellular Na(+) by K(+) or choline(+) sharply attenuated the effect of ouabain on intracellular Na(+) and K(+) content but did not protect the cells from death in the presence of ouabain. In contrast to ouabain, inhibition of the Na(+)/K(+) pump in K(+)-free medium increased Na(+)(i) content but did not affect cell survival. In control and K(+)-free medium, ouabain triggered half-maximal cell death at concentrations of approximately 0.5 and 0.05 microM, respectively, which was consistent with elevation of Na(+)/K(+) pump sensitivity to ouabain in K(+)-depleted medium. Our results show for the first time that the death of ouabain-treated renal epithelial cells is independent of the inhibition of Na(+)/K(+) pump-mediated ion fluxes and the [Na(+)](i)]/[K(+)](i) ratio. 相似文献
16.
The egg peptide speract increases intracellular pH (pHi) and cyclic nucleotides in sperm of the sea urchin Strongylocentrotus purpuratus by a mechanism dependent on seawater Na+ but not Ca2+ (Hansbrough, J. R., and Garbers, D. L. (1981) J. Biol. Chem. 256, 2235-2241; Repaske, D. R., and Garbers, D. L. (1983) J. Biol. Chem. 258, 6025-6029). Using the Ca2+ indicators quin2 and indo-1, we show that speract stimulates a transient rise in intracellular [Ca2+] ([a2+]i) when millimolar Ca2+ is present in seawater. The rise is increased and extended by the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine (MIX), which also enhances 22Na+ uptake with or without Ca2+. Without MIX, speract initiates a rise in [Ca2+]i that peaks within approximately 5 s and decreases with a t1/2 of approximately 9 s. Activation of Na+:H+ exchange without speract by either Na+ addition to sperm in Na+-free seawater (NaFASW) or by monensin also increases [Ca2+]i, but neither change is transient. Inhibition of Na+:H+ exchange by increased seawater [K+] prevents the rise in [Ca2+]i initiated by either speract or Na+ addition to sperm in NaFASW. Increasing pHi by adding 10 mM NH4+ or by addition of Li+ to sperm in NaFASW does not increase [Ca2+]i. The data suggest that speract binding leads to rapid activation of Na+:H+ exchange; and, as a consequence, [Ca2+] entry increases transiently through either Na+:Ca2+ exchange or else through a verapamil-insensitive Ca2+ channel. MIX prevents the inactivation of this entry mechanism. 相似文献
17.
Cytoplasmic [Ca2+] and intracellular pH in lymphocytes. Role of membrane potential and volume-activated Na+/H+ exchange 总被引:3,自引:1,他引:3 下载免费PDF全文
The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C. 相似文献
18.
We have compared the effects of highly purified preparations of cardiotoxins and phospholipases A2 from Naja mossambica mossambica venom on rat brain [Na+,K+]-ATPase activity. The results were the following: (i) micromolar concentrations of cardiotoxin preparations were required to inhibit [Na+,K+]-ATPase activity to the extent achieved by picomolar concentrations of phospholipases A2; i.e., the inhibitory effect of cardiotoxins appeared to be related to the contamination of the preparations by trace amounts of phospholipase A2; (ii) comparing phospholipases A2 from varied origins, a correlation was observed between [Na+,K+]-ATPase inhibition, isoelectric point, and toxicity for mice; (iii) when rat brain membranes were used, incubation for extended times with the most basic N. mossambica mossambica phospholipase A2 resulted in a biphasic [Na+,K+]-ATPase inhibition, suggesting that two distinct [Na+,K+]-ATPases were affected differentially. In contrast, incubation of rat brain membranes with either porcine pancreatic phospholipase A2, notexin, or beta-bungarotoxin and also incubation of erythrocyte membranes with the most basic N. mossambica mossambica phospholipase A2 produced monophasic [Na+,K+]-ATPase inhibitions. We discuss a possible specific action of toxic, basic phospholipase A2 on one of the [Na+,K+]-ATPase isoforms of excitable membranes. 相似文献
19.
Restrepo D.; Cho D. S.; Kron M. J. 《American journal of physiology. Cell physiology》1990,259(3):C490
20.
The distributionof TmDOTP5 in rat tissuewas compared with CoEDTA,an anionic complex previously used as a marker of extracellular space.Heart, liver, muscle, blood, and urine were collected from rats afterinfusion of either complex and were quantitatively analyzed by atomicabsorption spectroscopy. Although totalTmDOTP5 in blood and tissuewas consistently lower (0.88 ± 0.04;n = 6) thanCoEDTA after an identicalinfusion protocol (presumably because of some association of thephosphonate complex with bone), a comparison of blood and tissuecontents indicated that the two anionic complexes distributed intoidentical extracellular spaces. Relative extracellular space in the invivo liver, as determined byTmDOTP5 andCoEDTA, was 0.18 ± 0.02 and 0.15 ± 0.01, respectively. The corresponding relativeextracellular space values for the in vivo heart reported by the twoagents were identical (0.11 ± 0.02). Experiments were alsoperformed to evaluate the washout kinetics ofTmDOTP5 from anesthesizedrats. In rats given a total dose of 0.16 mmol TmDOTP5, 81% appeared inurine by 180 min, <2% was found in all remaining soft tissue,leaving ~18% undetected. The rate of Tm appearance in urine was fitto a standard pharmacokinetic model that included four tissuecompartments: plasma, one fast equilbrating space, one slowequilibrating space, and one very slow equilibrating space (presumablybone). The best fit result suggests that the highly chargedTmDOTP5 complex is clearedfrom plasma more rapidly than is the typical lower charged Gd-basedcontrast agents and that release from bone is slow compared with renal clearance. 相似文献