首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Serum prolactin (PRL) levels in basal conditions (two samples) and 30, 60, 90, 120, 150 e 180 minutes after oral administration of baclofen (20 mg) were evaluated in 6 healthy subjects and in 10 patients with prolactinoma. The effect of baclofen (20 mg by mouth) on the PRL secretion cimetidine (400 mg i.v.) or domperidone (20 mg i.v.) induced were evaluated in 9 healthy women by administration of baclofen 60 minutes before cimetidine or domperidone. Baclofen was unable to significantly rise serum PRL levels in healthy subjects and in patients affected by prolactinoma and furthermore did not interfere with PRL rise domperidone induced. On the contrary baclofen decreased PRL rise cimetidine induced. It was concluded that: in basal condition, GABAb receptor don't play an obvious role in modulation of PRL secretion; when H2 istaminergic inhibition on PRL secretion is blocked (at an hypothalamic site), a GABA inhibition, b receptor mediated, on PRL secretion became more clear; the domperidone blockade of hypophysial dopaminergic receptors suggests that GABAb modulation of prolactin secretion don't obtain itself by dopaminergic pathways.  相似文献   

2.
Response of growth hormone (GH) release to metoclopramide (MCP), a dopamine antagonist, was evaluated in normal women, hyperprolactinemic-amenorrheic patients with pituitary microadenoma and normoprolactinemic-amenorrheic patients. Mean basal concentrations of serum GH and prolactin (PRL) in amenorrheic patients were not significantly different from those in normal women except PRL concentrations in hyperprolactinemic patients. Serum GH concentrations significantly increased after MCP administration in normal women and normoprolactinemic-amenorrheic patients, but not in hyperprolactinemic patients. Dopamine causes modest and transient GH secretion in some subjects. Therefore MCP is not likely to stimulate GH secretion through its effect as a dopamine antagonist, and the mechanism of action of MCP on GH secretion is not known. Although the cause of the absence of GH response to MCP in hyperprolactinemic patients is unclear, it may be related to the increased hypothalamic dopaminergic tone which is operative in such patients or it may reflect a direct action of PRL on hypothalamic-pituitary GH regulation.  相似文献   

3.
Previous studies in Rhesus monkeys have demonstrated that a dopamine (DA) infusion rate of 0.1 microgram/kg X min induces peripheral DA levels similar to those measured in hypophysial stalk blood and normalizes serum prolactin (PRL) levels in stalk-transected animals. We therefore examined the effect of such DA infusion rate on basal and thyrotropin-releasing hormone (TRH)-stimulated PRL secretion in both normal cycling women and women with pathological hyperprolactinemia. 0.1 microgram/kg X min DA infusion fully normalized PRL serum levels in 8 normal cycling women whose endogenous catecholamine synthesis had been inhibited by alpha-methyl-p-tyrosine (AMPT) pretreatment. Furthermore, DA significantly reduced, but did not abolish, the rise in serum PRL concentrations induced by both acute 500 mg AMPT administration and 200 micrograms intravenous TRH injection in normal women. A significant reduction in serum PRL levels in response to 0.1 microgram/kg X min DA, similar to that observed in normal cycling women when expressed as a percentage of baseline PRL, was documented in 13 amenorrheic patients with TRH-unresponsive pathological hyperprolactinemia. However, a marked rise was observed in the serum PRL of the same patients when TRH was administered during the course of a 0.1-microgram/kg X min DA infusion. The PRL response to TRH was significantly higher during DA than in basal conditions in hyperprolactinemic patients, irrespective of whether this was expressed as an absolute increase (delta PRL 94.4 +/- 14.2 vs. 17.8 +/- 14.1 ng/ml, p less than 0.002) or a percent increase (delta% PRL 155.4 +/- 18.9 vs. 17.9 +/- 7.1, p less than 0.0005), and there was a significant linear correlation between the PRL decrements induced by DA and the subsequent PRL responses to TRH. These data would seem to show that the 0.1-microgram/kg X min DA infusion rate reduces basal PRL secretion and blunts, but does not abolish, the PRL response to both TRH and acute AMPT administration. The strong reduction in PRL secretion and the restoration of the PRL response to TRH by 0.1 microgram/kg X min DA infusion in high majority of hyperprolactinemic patients, seem to indicate that both PRL hypersecretion and abnormal PRL response to TRH in women with pathological hyperprolactinemia are due to a relative DA deficiency at the DA receptor site of the pituitary lactotrophs.  相似文献   

4.
It has been previously demonstrated that patients with hyperprolactinemia have impaired PRL response to dopaminergic blockade and increased TSH response. Since inhibitory dopaminergic modulation of aldosterone is well established, we have examined whether prolactinoma patients have an altered aldosterone response to dopaminergic blockade. To investigate this possibility we compared the plasma PRL, TSH and aldosterone responses to the dopamine (DA) antagonist metoclopramide (MCP; 10 mg i.v.) in 10 women with prolactinomas and 7 healthy female controls. Basal PRL levels in prolactinoma patients were elevated and showed a blunted rise following MCP. Although basal TSH levels were similar in the 2 groups of subjects, they significantly increased (p = 0.017) in prolactinoma patients while in contrast they did not significantly change in control subjects. Basal supine plasma aldosterone was similar in patients with prolactinomas (0.23 +/- 0.03 nmol/l) and in healthy subjects (0.25 +/- 0.04 nmol/l) and the increased aldosterone concentrations from 15 to 120 min following MCP were not significantly different in prolactinoma patients and in control subjects. It is concluded that in patients with prolactinomas, the alteration in the dopaminergic regulation is specifically related to the lactotroph.  相似文献   

5.
Three serotonin (5-HT) neurotoxins,p-chlorophenylalanine (PCPA, 125 and 250 mg/kg, i.p.),p-chloroamphetamine (PCA, 10 mg/kg, i.p.) and 5,7-dihydroxytryptamine (5,7-DHT, 200 µg/rat, i.c.v.) were used to examine whether depletion of central 5-HT has an effect on central dopaminergic (DA) neuronal activities or on prolactin (PRL) secretion. Adult ovariectomized Sprague-Dawley rats primed with estrogen (polyestradiol phosphate, 0.1 mg/rat, s.c.) were treated with one of three neurotoxins and then decapitated in the morning after 3–7 days. Blood sample and brain tissues were collected. The acute effect of PCA (from 30 to 180 min) was also determined. The concentrations of 5-HT, DA and their metabolites, 5-hydroxyindoleacetic acid and 3,4-dihydroxyphenylacetic acid, in the median eminence, striatum and nucleus accumbens were determined by HPLC-electrochemical detection. All three toxins significantly depleted central 5-HT stores by 11–20%. Except for PCPA, neither PCA nor 5,7-DHT had any significant effect on basal DA neuronal activities or PRL secretion. PCA also exhibited an acute effect on the release and reuptake of 5-HT and DA. In summary, depletion of central 5-HT stores to a significant extent for 3–7 days did not seem to affect basal DA neuronal activity and PRL secretion.  相似文献   

6.
The present study tested whether administration of the serotonin agonist, quipazine maleate, affects the secretion of luteinizing hormone (LH) and prolactin (PRL) and concomitantly, the activity of central noradrenergic and dopaminergic systems. Quipazine (15 mg/kg, ip) significantly reduced LH and increased PRL when administered to ovariectomized rats. Associated with these changes, the depletion of dopamine seen after synthesis inhibition with alpha-methyl tyrosine was reduced by quipazine in the caudate nucleus and median eminence, suggesting a depression of dopaminergic activity. The depletion of norepinephrine in the median eminence was unaffected. In a second experiment, quipazine (1 microM) diminished the potassium-induced release of both norepinephrine and dopamine from fragments of medial basal hypothalamus, in vitro. Release from preoptic area was unaffected. These results suggest that central serotonergic systems may interact with noradrenergic and dopaminergic systems that regulate LH and PRL secretion, respectively.  相似文献   

7.
Gluten exorphin B5 (GE-B5) is a food-derived opioid peptide identified in digests of wheat gluten. We have recently shown that GE-B5 stimulates prolactin (PRL) secretion in rats; this effect is abolished by preadministration of the opioid receptor antagonist naloxone. However, since the structure of naloxone allows it to cross the blood-brain barrier (BBB) and antagonize opioid effects centrally as well as peripherally, it could not established, on the basis of those data, if GE-B5-induced PRL release is exerted through sites located inside or outside the BBB. In this study, we sought to determine the site of action of GE-B5 on PRL secretion, by pretreating male rats with naloxone methobromide (NMB), an opioid antagonist that does not cross the BBB. Four groups of rats were given the following treatments: 1) intravenous vehicle; 2) intravenous GE-B5 (3 mg kg(-1) body weight); 3) intraperitoneal NMB (5 mg kg(-1) body weight), followed by vehicle; 4) NMB, followed by GE-B5. Blood samples for PRL were taken at intervals for 40 minutes after vehicle or GE-B5 administration. GE-B5 stimulated PRL secretion; the effect was statistically significant at time 20. NMB preadministration completely abolished PRL response. Our experiment indicates that GE-B5 stimulates PRL secretion through opioid receptors located outside the BBB. Since opioid peptides do not exert their effect on PRL secretion directly, but via a reduced dopaminergic tone, our data suggest that GE-B5 can modify brain neurotransmitter release without crossing the BBB.  相似文献   

8.
The effects of diclofensine, a pure dopamine (DA) uptake inhibitor on 1) 3H-DA uptake in rat arcuate-periventricular nucleus-median eminence synaptosomes, 2) basal and K+-evoked endogenous DA release from tuberoinfundibular dopaminergic (TIDA) neurons and 3) in vivo prolactin (PRL) secretion were studied. Diclofensine, in concentrations of 0.01, 0.1 and 1 microM caused a marked decrease of 3H-DA uptake. In addition, it was unable to stimulate basal endogenous DA release which, on the contrary, was elicited by d-amphetamine in the same concentration (50 microM). On the other hand, diclofensine (50 microM) caused a 3 fold enhancement of K+-evoked DA release. Finally, the compound, when administered in vivo to male rats, significantly reduced basal serum PRL levels. The results of the present study seem to indicate that the pharmacological blockade of DA uptake in TIDA neurons is a condition sufficient to cause a reduction of PRL release.  相似文献   

9.
Somatostatin inhibits not only growth hormone secretion, but also the secretion of several other hormones. The role of somatostatin in prolactin (PRL) secretion has not been clearly demonstrated. The present study was undertaken to examine the effects of somatostatin on rat PRL secretion in several different circumstances where the circulating PRL level is elevated: (1) the estradiol primed intact male rat, (2) normal and (3) estradiol primed rats pretreated with pimozide, (4) normal and (5) estradiol primed hypophysectomized male rats with adenohypophyses grafted under the kidney capsule (HAG rat). Blood samples (70 microL) were taken every 2 min via an indwelling atrial cannula from conscious, unrestrained animals. In the estradiol primed intact rats, a bolus injection of somatostatin (10, 100, and 1000 micrograms/kg) lowered PRL levels in a dose-dependent manner. When the PRL concentration was elevated by the administration of pimozide (3 mg/kg), a dopaminergic receptor blocking agent, somatostatin was ineffective in decreasing plasma PRL concentration but the PRL concentration was lowered by somatostatin when the rat had been primed with estradiol. Somatostatin had no effect on the normal HAG rats, but lowered the plasma PRL concentration in the estradiol primed HAG rats. Since somatostatin inhibits PRL secretion only in the estradiol primed rats, it is suggested that estradiol priming creates a new environment, presumably via new or altered receptors, which can be inhibited by somatostatin.  相似文献   

10.
The effects of drugs which interfere with alpha-adrenergic and dopaminergic mechanisms, involved in GH and PRL secretion, have been analyzed in urethane anesthetized rats. Clonidine induced a dose-dependent release of GH (0.0032--0.1 mg/kg i.v.) as well as of PRL (0.032--1.0 mg/kg i.v.). The lowest dose of clonidine, when given into the third ventricle, provoked a very pronounced release of GH. Phentolamine, given intravenously, inhibited the clonidine-induced GH release in a dose-dependnet manner. L-Dopa administered intravenously and apomorphine administered intravenously or intraventricularly did not affect basal secretion of GH bu- produced a dose-dependnet inhibition of clonidine-induced GH release. Pimozide did not change basal GH secretion. Furthermore pimozide did not attenuate the inhibition of clonidine-induced GH secretion seen after apomorphine administration, however, it completely reversed apomorphine-induced PRL inhibition. These findings demonstrate that an alpha-adrenoceptor-mediated stimulatory mechanism is involved in GH and PRL secretion. An inhibitory dopaminergic mechanism is confirmed for PRL secretion and suggested for GH secretion.  相似文献   

11.
Effects of orphanin FQ (OFQ) on central dopaminergic (DA) neurons and serum prolactin (PRL) were examined in ovariectomized, estrogen-primed Sprague-Dawley rats. The activities of central DA neurons, including the tuberoinfundibular (TI), nigrostriatal, mesolimbic, and incertohypothalamic ones, were determined by measuring the levels of 3,4-dihydroxyphenylacetic acid (DOPAC), the major metabolite of dopamine, in their projection regions in the brain by HPLC plus electrochemical detection. Intracerebroventricular administration of OFQ lowered DOPAC levels in the median eminence (ME), striatum, nucleus accumbens, and hypothalamic paraventricular nucleus in a dose (0.01-10 microg)- and time (30-90 min)-dependent manner. In contrast, OFQ increased DOPAC in the suprachiasmatic nucleus and had no effect in the periventricular nucleus. Serum PRL levels exhibited a typical inverse relationship with the activity of TIDA neurons, as determined by DOPAC levels in the ME. In the afternoon, we observed an endogenous decrease of ME DOPAC level accompanied by a PRL surge in estrogen-primed female rats. Although OFQ caused further decrease of ME DOPAC in the afternoon, it failed to augment the PRL surge level. Although pretreatment of an antisense oligodeoxynucleotide against the opioid receptor-like receptor gene had no effect on basal ME DOPAC levels in the morning or afternoon, it attenuated the afternoon PRL surge. Furthermore, it blocked the effects of exogenous OFQ on ME DOPAC and serum PRL levels, whereas the sense or missense oligodeoxynucleotide had no effect. These results indicate that OFQ and its receptors may be involved in the regulation of central DA neuronal activity and PRL secretion.  相似文献   

12.
H E Carlson 《Life sciences》1984,35(17):1747-1754
Nickel (Ni++) is a potent inhibitor of prolactin (PRL) secretion from isolated rat pituitary quarters in vitro, suppressing both basal PRL release and the stimulation of PRL secretion due to theophylline and dibutyryl cyclic AMP. Stimulation of growth hormone (GH) secretion by synthetic GHRH is also blunted by Ni++, although basal GH release and stimulated GH release due to theophylline or dibutyryl cyclic AMP are not suppressed. Ni++ antagonizes the stimulation of both PRL and GH secretion by barium (Ba++) ion, suggesting that the inhibitory effects of Ni++ on hormone release are due to an antagonism of calcium uptake or redistribution.  相似文献   

13.
Adenomatous cells obtained from a pituitary tumor induced in Fisher 344/Lis rats by the subcutaneous implantation of estrone (E1) were found to secrete large amounts of prolactin (PRL). The secretion of PRL was stimulated by thyrotropin-releasing hormone (TRH) and low concentrations of dopamine (DA), while micromolar concentrations of DA were inhibitory. High affinity binding sites for 3H-spiroperidol (3H-SPIR) were found to be present on the cells and to conform to the criteria of dopaminergic receptors. An adenylate cyclase (AC) present in the cells could be activated by a guanyl nucleotide and was inhibited by DA in the presence of guanosine 5'-triphosphate (GTP). Fractionation of the adenomatous cells by Percoll gradients identified two groups of cells capable of secreting PRL and bearing 3H-SPIR binding sites. These data indicate that this rat pituitary adenoma may be a model for human prolactinomas that might be utilized for the study of the mechanism of action of dopaminergic drugs.  相似文献   

14.
Previous in vitro studies have demonstrated zinc (Zn++) inhibition of basal and of potassium (K+) or thyrotropin-releasing hormone (TRH)-stimulated prolactin (PRL) secretion, in a selective, reversible, and dose-dependent manner. Thus, Zn++ may regulate physiologically pituitary PRL secretion. Furthermore, studies with patients with uremia, cirrhosis or prolactinoma, have shown the coexistence of hypozincemia and hyperprolactinemia and zinc supplementation did not correct hyperprolactinemia in these patients. In normal individuals Zn++ administration produced controversial results on PRL secretion. Here, we investigated whether zinc administration affects TRH-stimulated PRL in healthy men. We found that Zn++ administration does not change the TRH-stimulated PRL. Therefore, in normal conditions, Zn++ does not inhibit TRH-stimulated prolactinemia. In addition, we found that acute increases of blood PRL and TRH do not alter blood Zn++ levels.  相似文献   

15.
The effect of estradiol on anterior pituitary dopaminergic receptor content was studied in vivo and in vitro, in relation with the serum PRL secretion. A progressive and significant decrease in the number of these receptors was observed, a few hours before the serum release of PRL induced in ovariectomized females by a sequential treatment with different doses of estradiol benzoate. This decrease in the number of dopaminergic membrane receptors can be obtained as well in vitro, when anterior pituitaries, from ovariectomized rats, are incubated with 17 beta-estradiol. These results suggest that the stimulatory effect of estradiol on PRL secretion may be due, at least in part, to the direct "desensitization" to DA of anterior pituitary cells, which is produced by the decrease of dopaminergic receptor level.  相似文献   

16.
Prolactin dynamic was investigated in 43 premenopausal patients with primary empty sella (PES) diagnosed by pneumoencephalography and CT scan. Only normoprolactinemic patients were included in this study. Basal PRL levels ranged from 4 to 25 ng/ml. PRL responses to TRH (200 micrograms i.v.) and metoclopramide (MCP, 10 mg p.o.) were not significantly different from those in normal subjects, although a trend toward higher responses was present in PES patients. The administration of nomifensine (NOM, 200 mg p.o.) induced a PRL decrease, which was not significantly different from that in normal subjects. However, a sequential stimulation with TRH plus MCP (1 h after TRH administration) induced an exaggerated PRL increase which was significantly different from that in normal subjects. The peak PRL responses after stimulation were not significantly correlated with estradiol levels or FSH/LH ratios in our patients. The influence of body weight was also excluded on the basis of the responses observed in 8 obese control subjects that were significantly lower than in PES patients. Moreover, in 19 patients we studied the intracranial pressure (ICP) through an indwelling catheter inserted into the lumbar subarachnoid space. ICP was normal in 5 patients and elevated in 14 patients. When we compared PRL dynamics in patients with normal or elevated ICP, a significant difference was noted between the percentage of PRL decrease after NOM, that was lower and delayed in patients with increased ICP, suggesting an influence of ICP on neuronal dopamine reuptake. In conclusion, an augmented PRL reserve is present in premenopausal patients with PES. A correlation can be found between ICP and the function of dopaminergic neurons controlling lactotroph cells.  相似文献   

17.
In previous studies it has been observed that acute administration or short-term treatment with calcium channel blockers can influence the secretion of some pituitary hormones. In this study, we have examined the effect of the long-term administration of diltiazem on luteinizing-hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and prolactin (PRL) levels under basal conditions and after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing-hormone (TRH) stimulation in 12 subjects affected by cardiovascular diseases who were treated with diltiazem (60 mg 3 times/day per os) for more than 6 months and in 12 healthy volunteers of the same age. The basal levels of the studied hormones were similar in the two groups. In both the treated patients and the control subjects, a statistically significant increase (p < 0.01) in LH, FSH, TSH and PRL levels was observed after GnRH/TRH administration. Comparing the respective areas under the LH, FSH, TSH and PRL response curves between the two groups did not present any statistically significant difference. These findings indicate that long-term therapy with diltiazem does not alter pituitary hormone secretion.  相似文献   

18.
In adult male Wistar rats submitted to a standardized noise stress, intravenous TRH induced a prolactin (PRL) secretory response. Prior IV naloxone administration not only lowered plasma PRL levels in those stressed rats but abolished also the stimulatory action of TRH. This effect was further studied by superfusion experiments on enriched PRL cell suspensions (70% lactotrophs) from female adult Wistar rats. Naloxone kept unaffected the basal PRL secretion but lowered significantly that induced by TRH. These experiments suggest a dual effect of naloxone on rat PRL secretion, one exerted on central opioid receptors lowering stress-related increased basal PRL levels, the other inhibiting the TRH-dependent PRL secretion exerted at the lactotroph level itself.  相似文献   

19.
The dopaminergic antagonist, metoclopramide (MCP) causes an increase in plasma aldosterone (PA) by a processnot well delineated. To investigate the mechanism of action of metoclopramide (MCP), studies were performed in rats after pre-treatment with L-dihydroxy-phenylalanine (L-dopa) and after bilateral nephrectomy. Intra-arterial MCP (200 μg/kg) resulted in a significant elevation in PA and prolactin (PRL) at 5 min and plasma renin activity (PRA) at 10 min without altering serum potassium levels. Pre-administration of L-dopa (30 mg/kg) delayed and markedly blunted PA, PRL and PRA resonses to MCP. In 7 rats, studied 30 hours after bilateral nephrectomy, the PRA was measurable (2.5 ± 0.4 ng/ml h?1) but displayed no response to MCP. In contrast, the PA and PRL responses to MCP were not significantly affected. L-dopa induced suppression of PRA and PA was prevented by pre-administration of MCP. These results suggest that dopaminergic modulation of PA secretion occurs independently of the renin-angiotensin system.  相似文献   

20.
Dopamine infusion 4 micrograms/kg/min over 4 h, administered to six subjects with diagnosis of polycystic ovarian disease laparoscopically confirmed, produced a significant decrease in serum LH, FSH and PRL, suggesting a reduced dopamine activity in these subjects. The addition of naloxone 4 mg iv bolus plus 4 mg/h over 2 h, a specific opiate antagonist, does not interfere with the well-established dopaminergic inhibitory influence on LH, FSH and PRL secretion. This suggests that opiatergic pathways are not directly involved in the dopamine-induced suppressive effect on LH secretion in subjects with LH-dependent polycystic ovarian disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号