首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiotensin I-converting enzyme (peptidyl dipeptide hydrolase, EC 3.4.15.1) was solubilized from the membrane fraction of human lung using trypsin treatment and purfied using columns of DE 52-cellulose, hydroxyapatite and Sephadex G-200. The purified enzyme was shown to convert angiotensin I to angiotensin II and also to inactivate bradykinin. The specific activity of the enzyme was 9.5 units/mg protein for Hippuryl-His-Leu-OH and 0.665 mumol/min per mg protein for angiotensin I. The enzymic activity obtained after trypsin treatment (1 mg/200 mg protein) for 2 h could be divided into three components: (i) an enzyme of molecular weight 290 000 (peak I), (ii) an enzyme of molecular weight 180 000 (peak II) and (iii) an enzyme of molecular weight 98 000 (peak III), by columns of DE 52-cellulose and Sephadex G-200. Km values of peak I, II and III fraction for Hippuryl-His-Leu-OH were identical at 1.1 mM. pH optimum of the enzyme was 8.3 for Hippuryl-His-Leu-OH.  相似文献   

2.
Huber SC  Pharr DM 《Plant physiology》1981,68(6):1294-1298
High activities (100-200 micromoles UDP hydrolyzed per milligram chlorophyll per hour) of uridine-5′ diphosphatase (UDPase) have been identified in extracts of fully expanded soybean (Glycine max Merr.) leaves. In desalted crude extracts, UDPase activity was strongly inhibited by low concentrations of Mg:ATP (I50 = 0.3 millimolar). Two forms of the enzyme were resolved by gel filtration on Sephadex G-150. The higher molecular weight form (UDPase I, about 199 kilodaltons by gel filtration) retained ATP sensitivity (I50 = 0.3 millimolar), whereas the major, lower molecular weight form (UDPase II, about 58 kilodaltons) was markedly less sensitive to ATP inhibition (I50 = 2.7-3.0 millimolar). Subsequent purification of UDPase I by ion-exchange chromatography on DEAE cellulose produced a lower molecular weight enzyme (about 74 kilodaltons by gel filtration) that had reduced ATP sensitivity similar to UDPase II. Ion-exchange chromatography of UDPase II did not alter molecular weight or ATP sensitivity. UDPase II, after the DEAE-cellulose step, was specific for nucleoside diphosphates. Maximum reaction velocity decreased in the following sequence; UDP > GDP > CDP. ADP was not a substrate for the enzyme. The reaction catalyzed was hydrolysis of the terminal-P of UDP to form UMP. The enzyme was stimulated by Mg2+ and the pH optimum was centered between pH 6.5 and 7.0. In a survey of various species, soybean cultivars had highest activities of apparent UDPase and other species ranged in apparent activity from 0 to 30 micromoles hydrolyzed per milligram chlorophyll per hour.  相似文献   

3.
From the mycelia of Neurospora crassa (wild type No. 6068) multiple forms of a nuclease which had very close isoelectric points (pI = 9.6 (peak I), 9.4 (peak II)) were isolated by ampholine electrofocusing column chromatography (pH 8.5 ~ 10). The nuclease was about 300-fold purified from the crude extract. The two fractions of Peak I, II were indistinguishable in their enzymatic properties and were considered as manifestation of the same enzyme with minor physicochemical differences. The molecular weight was around 41,000 as estimated by the gel filtration method. The enzyme could hydrolyze both DNA and RNA in the order of heat-denatured DNA > native DNA DNA ≧ RNA. RNA competitively inhibited DNA degradation with this enzyme. The enzyme was therefore regarded as a nuclease. The pH optimum was around pH 6.5 toward native DNA, pH 6.7 toward heat-denatured DNA and pH 7.9 toward RNA. The temperature optimum was around 40°C toward these substrates and most of the activities were lost by heating at 55°C for 15 min. The enzyme required Mg2+ for action toward heat-denatured DNA and Mg2+, Mn2+ or Co2+ toward native DNA. In the presence of EDTA, the activities toward both types of DNA were lost and recovered by addition of the respective activating metallic ions. p-CMB inhibited this nuclease, but β-mercapto-ethanol and glutathione had no effect. Polyamìnes showed no activation of the nuclease for DNA degradation.  相似文献   

4.
Comparison of calpain I and calpain II from carp muscle   总被引:2,自引:0,他引:2  
1. The content of calpain II is 3.4 times more than that of calpain I when estimated by the elution profiles from a column of DEAE-cellulose. 2. Calpain I required 1 mM Ca2+ and calpain II required 5 mM Ca2+ to show the full activities. These data demonstrated that Ca2+-sensitivities of both calpains were lower than those of mammalian calpains, respectively. 3. The optimum caseinolytic activity was pH 7.2 for calpain I and pH 7.5 for calpain II. 4. The molecular weight of calpain I was estimated to be 110 k and that of calpain II to be 120 k by gel filtration. 5. Calpain I was much more heat-stable than calpain II around 50-60 degrees C. 6. Both calpains were sensitive to calpastatin, an endogenous inhibitor for calpain.  相似文献   

5.
The larvae of the webbing clothes moth, Tineola bisselliella contain two carboxypeptidases (EC 3.4.12-) and one of these has been purified by preparative polyacrylamide gel electrophoresis. Its pH optimum for the hydrolysis of N-benzyloxycarbonyl-glycyl-leucine was pH 7.5-7.7 and its molecular weight as judged by gel filtration was 72 000. It is strongly inhibited by disopropylfluorophosphate, thiol reagents and some metal cations and also by 1:10 phenanthroline but not EDTA. Km and V values for the hydrolysis of 13 N-acyl dipeptides were determined. The enzyme has a strong preference for neutral aliphatic amino acid residues and does not hydrolyse C-terminal proline, arginine or lysine. It is a true carboxypeptidase, requiring an L-amino acid in the C-terminal position, with a free carboxyl group and hydrolysing peptide substrates consecutively from the C-terminal end. Dipeptides are cleaved much more slosly than tripeptides or N-acyl dipeptides.  相似文献   

6.
Four extracellular proteolytic enzymes (I-IV) (EC 3.4.22.-) were identified in static cultures of Chromobacterium lividum (NCIB 10926) by agar gel electrophoresis and isoelectric focusing. Proteinases I-III were freed of non-enzymic protein by chromatography on TEAE-cellulose and CM-cellulose. The enzyme mixture was then fractionated in a pH gradient by isoelectric focusing. All three enzymes were shown to be heat-labile metallo-enzymes. Optimal activity occurred at pH 5.6 for enzyme I and at pH 6.2 for enzymes II and III. Remazolbrilliant Blue-hide powder was a sensitive substrate for these enzymes. Proteinase I was also shown to degrade haemoglobin and casein effectively, but not myoglobin, ovalbumin or bovine serum albumin. Proteinases I-III exhibited molecular weight values of 75 000, 72 000 and 67 000 by exclusion chromatography and 71 000 and 66 000 by sodium dodecyl sulphate-poly-acrylamide-gel electrophoresis for enzyme I and II, respectively. The amino acid compositions of enzymes I and II were somewhat similar. Proteinase I was inhibited by EDTA, 1,2-di(2-aminoethoxy)ethane-N,N,N',N'-tetraacetic activity. Mg2+ could substitute for Ca2+ or Mn2+ for Co2+. The interrelationship of proteinases I-III is discussed.  相似文献   

7.
Membrane-bound inositolpolyphosphate 5-phosphatase was solubilized and highly purified from a microsomal fraction of rat liver. Its physiochemical and enzymological properties were compared with those of highly purified preparations of two types of soluble enzyme (soluble Type I and Type II) from rat brain. The molecular masses of the membrane-bound and soluble Type I enzymes were 32 kDa, while that of soluble Type II enzyme was 69 kDa, as determined by molecular sieve chromatography. The membrane-bound and soluble Type I enzymes showed similar broad peaks on isoelectric focusing (pI 5.8-6.4), while soluble Type II enzyme showed multiple peaks in the region between pI 4.0-5.8. All three enzymes required divalent cation for activity. Mg2+ was the most effective for both the membrane-bound and soluble Type I enzymes, while Co2+ enhanced soluble Type II enzyme activity about 1.5-fold relative to Mg2+ at 1 mM. The optimal pH of both the membrane-bound and soluble Type I enzymes was 7.8, while that of soluble Type II was 6.8. The Km values for inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] of all three enzymes were similar (5-8 microM), but those for inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] were quite different, the Km values of membrane-bound and soluble Type I enzymes being 0.8 microM, while that of soluble Type II was 130 microM. These similarities between the membrane-bound and soluble Type I enzymes suggest that these two molecules may be the same protein, and that concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, both of which are considered to play critical roles in the regulation of intracellular Ca2+-concentration, may be differently regulated by two functionally distinct enzymes.  相似文献   

8.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

9.
Ca2+ plus Mg2+-dependent endodeoxyribonuclease was extracted from calf thymus chromatin and purified to a state free from contamination by other DNases. This DNase required both Ca2+ and Mg2+, or Mn2+ alone for its activity and the optimum pH for activity was at 6.5-7.5. No specificity for the 5'-base was observed. The molecular weight of the DNase was estimated to be about 25,000-30,000 by glycerol gradient centrifugation. Actin and antibody for pancreatic DNase (DNase I) did not inhibit the enzyme, whereas both strongly inhibited DNase I, suggesting that these two DNases are different enzymes.  相似文献   

10.
Phosphodiesterases from blood cells and serum can be subdivided in several groups according to substrate specificity, optimum pH and effects of inhibitors: 1) Acidic phosphodiesterase activities were not inhibited by EDTA, represented the whole p3'T hydrolysing activity, but only a part of the activity hydrolysing the other substrates (p5'T was not hydrolysed at acidic pH). This acid phosphodiesterase activity was high in white blood cells and platelets but very low in serum. 2) Neutral phosphodiesterase activity was prevalent in leucocytes when BpP and BMP were used as substrates. 3) Alkaline phosphodiesterase activity was characterized by substrate specificity at optimum pH and distribution in cells and serum: in serum there are phosphodiesterases hydrolysing all checked substrates (p3'T excepted) at optimum pH 9.0, whereas in blood cells alkaline phosphodiesterase activities are very low for all substrates (excepted for p Phi Pn and p5'T). In each cell and serum we have determined, for all phosphodiesterase activities, the linearity of activity of versus time and versus protein concentration, the effect of substrate and effector concentration and the heat stability.  相似文献   

11.
Two isozymes (AIV I and AIV II) of soluble acid invertase (EC 3.2.1.26) were purified from Japanese pear fruit through procedures including (NH(4))(2)SO(4) precipitating, DEAE-Sephacel column chromatography, Concanavalin A (ConA)-Sepharose affinity chromatography, hydroxyapatite column chromatography and Mono Q HR 5/5 column chromatography. The specific activities of purified AIV I and AIV II were 2670 and 2340 (nkat/mg protein), respectively. AIV I was a monomeric enzyme of 80 kDa, while AIV II may be also a monomeric enzyme, which is easy to be cleaved to 52 kDa and 34 kDa polypeptide during preparation by SDS-PAGE. The Km values for sucrose of AIV I and AIV II were 3.33 and 4.58 mM, respectively, and optimum pH of both enzyme activities was pH 4.5.  相似文献   

12.
The seminal plasma of man, boar and bull was found to have a sphingomyelinase (SMase) activity hydrolysing [N-methyl-14C]sphingomyelin. The human and porcine enzymes had an acid pH optimum and were not influenced by divalent metal ions or chelating agents. They were closely similar with the lysosomal enzyme in many tissues. The bovine seminal plasma SMase was partially purified. The enzyme was a glycoprotein with pH optimum at 6.5, a broad pI 4.2-4.8 and molecular mass of 160 and 60 kDa, respectively, in native and SDS-PAGE. The enzyme was activated by Co greater than Mn greater than Cd greater than Ni and inhibited by chelating agents, Cu, Fe, Pb and Zn. The enzyme was clearly distinct from the acid lysosomal SMase and the previously described neutral Mg2+-dependent and independent activities. It had a wide distribution in the bull reproductive tissues.  相似文献   

13.
Invertase activity associated with the walls of Solanum tuberosum tubers   总被引:4,自引:0,他引:4  
Three fractions with invertase activity (beta-D-fructofuranoside fructohydrolase, EC 3.2.1.26) were isolated from mature Solanum tuberosum tubers: acid soluble invertase, invertase I and invertase II. The first two invertases were purified until electrophoretic homogeneity. They are made by two subunits with an apparent M(r) value of 35,000 and their optimal pH is 4.5. Invertase I was eluted from cell walls with ionic strength while invertase II remained tightly bound to cell walls after this treatment. This invertase was solubilized by enzymatic cell wall degradation (solubilized invertase II). Their K(m)s are 28, 20, 133 and 128 mM for acid soluble invertase, invertase I, invertase II and solubilized invertase II, respectively. Glucose is a non-competitive inhibitor of invertase activities and fructose produces a two site competitive inhibition with interaction between the sites. Bovine serum albumin produces activation of the acid soluble invertase and invertase I while a similar inhibition by lectins and endogenous proteinaceous inhibitor from mature S. tuberosum tubers was found. Invertase II (tightly bound to the cell walls) shows a different inhibition pattern. The test for reassociation of the acid soluble invertase or invertase I on cell wall, free of invertase activity, caused the reappearance of all invertase forms with their respective solubilization characteristics and molecular and kinetic properties. The invertase elution pattern, the recovery of cell wall firmly bound invertase and the coincidence in the immunological recognition, suggest that all three invertases may be originated from the same enzyme. The difference in some properties of invertase II and solubilized invertase II from the other two enzymes would be a consequence of the enzyme microenvironment in the cell wall or the result of its wall binding.  相似文献   

14.
Phosphodiesterase I [EC 3.1.4.1] was purified from normal human urine in a highly purified state free from phosphodiesterase II, RNase, DNase I, DNase II, and phosphatase by column chromatographies of DEAE-Toyopearl, butyl-Toyopearl, Affi-Gel blue, and Sephadex G-150. The molecular weight of the enzyme was 1.9 x 10(5) and the pH optimum around 9.0 with p-nitrophenyl deoxythymidine 5'-phosphate as the substrate. The enzyme hydrolyzed the 3'-5' linkage of various dinucleoside monophosphates at approximately the same rate and the phosphodiester bonds of cyclic 3',5'-mononucleotides to produce mononucleoside 5'-phosphate. The enzyme also hydrolyzed ADP to 5'-AMP and Pi, ATP to 5'-AMP and PPi, and NAD+ to 5'-AMP and NMN. The enzyme activity was abolished by removal of metal ions with EDTA, and the metal-free enzyme was reactivated on the addition of Zn2+. The enzyme activity was also abolished by some reducing agents and the inhibition was reversed by Zn2+. The metal-free enzyme was less stable than the native enzyme, and Zn2+ and Co2+ restored the stability of the metal-free enzyme to the level of the native enzyme. The enzyme degraded oligonucleotides and high molecular nucleotides stepwise from the 3'-termini to give 5'-mononucleotides. The enzyme hydrolyzed single-stranded DNA more preferentially than double-stranded DNA. The enzyme also nicked superhelical covalently closed circular phi X174 DNA to yield first open circular DNA and then linear DNA.  相似文献   

15.
In contrast to previous knowledge of chlorophyllase activityin higher plants, significant enzyme activity was isolated fromtea leaves in a soluble state. Soluble chlorophyllase was partially purified by proceduresincluding ammonium sulfate fractionation (Preparation I). Theinsoluble fraction was extracted, by solubilizing it with SDC,from the methanol-acetone powder of sediments of the leaf homogenate,from which the water-soluble enzyme had been completely removedby repeated extraction. This initially insoluble enzyme wasalso partially purified (Preparation II). Specific activities(mg chlorophyll a hydrolyzed per hr per mg protein, 7.2 forPreparation I, and 12.4 for Preparation II), were much higherthan those reported for other plant material. The soluble enzyme was more resistant to PCMB, lipase and heattreatment. The two enzymes differed in optimum temperature andoptimum acetone concentration needed for the reaction, but showedthe same optimum pH, and same Km value. The Km value was thesame (7 µM) for reactions with 30% and 50% acetone. These results suggest that, in spite of differences in locationand extractability, activities of the soluble and insoluble(solubilized) chlorophyllase in tea leaves are attributableto the same enzyme. (Received March 8, 1972; )  相似文献   

16.
1. sn-Glycero-3-phosphocholine diesterase activities, glycerophosphohydrolase (EC 3.1.4.2) and choline phosphohydrolase (EC 3.1.4.38) from rat brain have been partially purified and characterized using sn-glycere-3-[32P]phosphocholine as substrate and separating the reaction products by anion-exchange chromatography and ionophoresis. 2. Rat brain contained particulate (75%) and soluble (25%) activity from both diesterases. No difference in pH optimum or metal ion requirement for the particulate compared to the soluble enzymes was observed. 3. Glycerophosphohydrolase (EC 3.1.4.2) was purified 60-fold, choline phosphohydrolase (EC E.1.4.38) 120-fold from rat brain supernatant fraction by DEAE-cellulose ion-exchange chromatography and sucrose density gradient centrifugation. The density gradient results in conjunction with dodecyl sulphate-polyacrylamide gel disc electrophoresis yielded molecular weight estimates of 230 000 (monomer 62 000) for choline phosphohydrolase and 120 000 (monomer 70 000) for glycerophosphohydrolase (EC 3.1.4.2). 4. Glycerophosphohydrolase (EC 3.1.4.2) has a pH optimum of 8.9 and a Km for sn-glycero-3-phosphocholine of 0.6 mM. The enzyme is inhibited by EDTA and reactivated by Ca2+. Choline phosphohydrolase (EC 3.1.4.38) has pH optimum 10.5, a Km of 2 mM and is unaffected by EDTA. Both enzymes require Ca2+ for maximum activity.  相似文献   

17.
Membrane-associated phospholipase A2 was purified to homogeneity from human spleen. The enzyme was solubilized from the particulate fraction by the addition of KBr, and purified by reverse-phase high-performance liquid chromatography. The estimated molecular weight of the enzyme was 14,000. The enzyme had a pH optimum around 9.5, required the presence of Ca2+ for its activity, and hydrolyzed phosphatidylethanolamine more efficiently than phosphatidylcholine.  相似文献   

18.
Human erythrocytes contain a phosphatase that is highly specific for phosphoglycollate. It shows optimum pH of 6.7 and has Km 1 mM for phosphoglycollate. The molecular weight appears to be about 72000. The enzyme is a dimeric molecule having subunits of mol. wt. about 35000. It could be purified approx. 4000-fold up to a specific activity of 5.98 units/mg of protein. The activity of the enzyme is Mg2+-dependent. Co2+, and to a smaller extent Mn2+, may substitute for Mg2+. Half-maximum inhibition of the phosphatase by 5,5'-dithiobis-(2-nitrobenzoate), EDTA and NaF is obtained at 0.5 microM, 1 mM and 4 mM respectively. Moreover, it needs a univalent cation for optimum activity. Phosphoglycollate phosphatase is a cytoplasmic enzyme. Approx. 5% of its total activity is membrane-associated. This part of activity can be approx. 70% solubilized by freezing, thawing and treatment with 0.25% Triton X-100.  相似文献   

19.
Dextransucrase [EC 2.4.1.5] activity from cell-free culture supernatant of Leuconostoc mesenteroides NRRL B-1299 was purified by (NH4)2SO4 fractionation, adsorption on hydroxyapatite, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The extracellular enzyme was separated into two principal forms, enzymes I and N, and the latter was shown to be an aggregated form of the protomer, enzyme I. Enzymes I and N were both electrophoretically homogeneous and their relative activities reached 820 and 647 times that of the culture supernatant, respectively. On sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis, enzyme N dissociated into the protomer enzyme I, with a molecular weight of 48,000. Enzyme I was gradually converted into enzyme N upon aging, and this conversion was stimulated in the presence of NaCl. The optimum pH and temperature of enzyme I activity were pH 6.0 and 40 degrees, respectively, while those of enzyme N were pH 5.5 and 35 degrees. The Km values of enzymes I and N were 13.9 and 13.1 mM, respectively. Ca2+, Mg2+, Fe2+, and Co2+ stimulated the activity of enzyme N, and EDTA showed a potent inhibitory effect on this enzyme. Moreover, the activity of enzyme N was more effectively stimulated by exogenous dextrans as compared with enzyme I.  相似文献   

20.
一株耐热脂肪酶产生菌的筛选及酶学性质研究   总被引:2,自引:0,他引:2  
从云南省富油地采取了60份土样中,利用透明圈法筛选出一株耐热脂肪酶产生菌。对其酶学性质和发酵条件进行了研究,酶学性质表明,该酶最适作用温度为50℃,最适pH6.0,在pH3.0-8.0范围内稳定,在60℃保温60 min酶活还保留70%;70℃保温60 min残余50%;具有良好的热稳定性;不同金属离子有不同的作用,Ca+,K+对酶有激活作用,Fe3+、Pb2+、Mn2、Cu2+、Al3+、Zn2+对酶活有抑制作用。EDTA对酶影响不大。产酶最佳条件为:MgSO4.7H2O 0.05 g,K2HPO40.1 g,CaCO30.25 g,可溶性淀粉2.5 g,大豆粉2.5 g,装液量50 mL。这株细菌通过培养基优化酶活达到20.3 U/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号